Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/src/main/python/ml/binarizer_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,6 @@
binarizedFeatures = binarizedDataFrame.select("binarized_feature")
for binarized_feature, in binarizedFeatures.collect():
print(binarized_feature)
# $example off$
# $example off$

sc.stop()
2 changes: 1 addition & 1 deletion examples/src/main/python/ml/onehot_encoder_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
(4, "a"),
(5, "c")
], ["id", "category"])

stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
model = stringIndexer.fit(df)
indexed = model.transform(df)
Expand Down
6 changes: 3 additions & 3 deletions examples/src/main/python/ml/pca_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,9 +30,9 @@

# $example on$
data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
(Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
df = sqlContext.createDataFrame(data,["features"])
(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
(Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
df = sqlContext.createDataFrame(data, ["features"])
pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures")
model = pca.fit(df)
result = model.transform(df).select("pcaFeatures")
Expand Down
10 changes: 5 additions & 5 deletions examples/src/main/python/ml/polynomial_expansion_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,11 +29,11 @@
sqlContext = SQLContext(sc)

# $example on$
df = sqlContext.createDataFrame(
[(Vectors.dense([-2.0, 2.3]), ),
(Vectors.dense([0.0, 0.0]), ),
(Vectors.dense([0.6, -1.1]), )],
["features"])
df = sqlContext\
.createDataFrame([(Vectors.dense([-2.0, 2.3]), ),
(Vectors.dense([0.0, 0.0]), ),
(Vectors.dense([0.6, -1.1]), )],
["features"])
px = PolynomialExpansion(degree=2, inputCol="features", outputCol="polyFeatures")
polyDF = px.transform(df)
for expanded in polyDF.select("polyFeatures").take(3):
Expand Down