Zero-shot re-use of Parameter-Efficient experts has been tackled in two recent concurrent papers: PhatGOOSE (https://arxiv.org/abs/2402.05859) and Arrow (https://arxiv.org/pdf/2405.11157). In this notebook, we will give a brief overview on how to produce similar results to these papers thanks to the library https://github.com/microsoft/mttl
which makes it easy to manage and route parameter-efficient experts.
We will also show MBC as a way of clustering experts and re-training experts on similar tasks.
Refer to the papers https://arxiv.org/pdf/2405.11157, https://arxiv.org/abs/2402.05859, or to our survey https://www.arxiv.org/pdf/2408.07057 for more details!
# let's install MTTL first
!pip install git+https://github.com/microsoft/mttl
MTTL offers some quick code to train some experts for FLAN and storing them into an "Expert Library". An expert library contains a list of experts and their parameters and that can be stored locally, on HF or on Azure.
The following code trains 10 experts on a subset of data from FLAN (with subsampled examples for each expert) and store them in a local library.
If you don't want to execute the following code, you can alternatively create the local expert library from a pretrained library we provide in sordonia/trained_gpt125m_experts_colab
(see code below).
# here, we train experts and we upload them to a local library (repository) of experts.
import os
from mttl.arguments import ExpertConfig
from mttl.datamodule.base import get_datamodule
from mttl.models.library.expert_library import ExpertLibrary
from mttl.models.expert_model import ExpertModel, ExpertModelConfig
from mttl.models.train_utils import train_model
# Set this flag to True if you want to re-train the experts!
train_library = False
train_config = ExpertConfig.from_dict(
{
"lora_rank": 4,
"lora_alpha": 1.,
"lora_dropout": 0.0,
"weight_decay": 0.0,
"output_dir": "/tmp/",
"model_modifier": "lora",
"modify_modules": ".*",
"modify_layers": "q_proj|v_proj|k_proj",
"trainable_param_names": ".*lora_[ab].*",
"num_train_epochs": 5,
"learning_rate": 1e-2,
"micro_batch_size": 16,
"train_batch_size": 16,
"predict_batch_size": 8,
"precision": "bf16",
"model": "EleutherAI/gpt-neo-125m",
"model_family": "gpt",
"optimizer": "adamw",
"dataset": "sordonia/flan-100-flat",
"warmup_proportion": 0.,
"max_input_length": 1024,
"max_output_length": 128,
"truncation_side": "left"
}
)
if train_library:
library = ExpertLibrary.get_expert_library("local://trained_gpt125m_experts_colab", create=True)
for task in [
"wiqa_what_is_the_final_step_of_the_following_process",
"sciq_Multiple_Choice",
"adversarial_qa_droberta_answer_the_following_q",
"duorc_SelfRC_question_answering",
"cos_e_v1_11_description_question_option_id",
"race_high_Select_the_best_answer",
"race_high_Select_the_best_answer_generate_span_",
"wiki_qa_Is_This_True_",
"quail_description_context_question_text",
"wiki_hop_original_explain_relation"
]:
# set the task name to the task we want to finetune on
train_config.finetune_task_name = task
# initialize an expert model
model = ExpertModel(
ExpertModelConfig(
base_model=train_config.model,
expert_name=train_config.finetune_task_name,
task_name=train_config.finetune_task_name,
modifier_config=train_config.modifier_config,
),
device_map="cuda",
precision=train_config.precision,
)
# minimal training code to finetune the model on examples from the task
train_model(train_config, model, get_datamodule(train_config))
# add the expert to the library!
expert_instance = model.as_expert(training_config=train_config.to_dict())
library.add_expert(expert_instance, force=True)
else:
library = ExpertLibrary.get_expert_library("hf://sordonia/trained_gpt125m_experts_colab").clone("local://trained_gpt125m_experts_colab")
# Let's see which experts are in the library... :-)
for expert_name in library.keys():
print("Expert: ", expert_name, " with config: ", library[expert_name].expert_config)
print("Experts in library:", len(library))
Expert: adversarial_qa_droberta_answer_the_following_q with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: cos_e_v1_11_description_question_option_id with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: duorc_SelfRC_question_answering with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: quail_description_context_question_text with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: race_high_Select_the_best_answer with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: race_high_Select_the_best_answer_generate_span_ with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: sciq_Multiple_Choice with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: wiki_hop_original_explain_relation with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: wiki_qa_Is_This_True_ with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: wiqa_what_is_the_final_step_of_the_following_process with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Experts in library: 10
Ok, this library contains 10 LoRA experts!
In the Arrow paper, they find that LoRA parameter similarity correlates positively with the transfer between task. So let's run the MBC clustering algorithm on the experts from the library. Procedurally, this clusters LoRA parameters and outputs the expert names in each cluster :-)
In MTTL, any transformation of a library is called LibraryTransform
. Let's use the MBCWithCosSimTransform
:
from mttl.models.library.library_transforms import MBClusteringTransformConfig, MBCWithCosSimTransform
# sparsity threshold, parameters of magnitude less than the threshold are set to 0
# computing cosine similarity between LoRA parameters, this helps reducing noise!
sparsity = 0.2
# number of clusters to produce
k = 2
cfg = MBClusteringTransformConfig(k=k, sparsity_threshold=sparsity)
transform = MBCWithCosSimTransform(cfg)
clusters: dict = transform.transform(library, recompute=True)
# `clusters` is a dict containing task names for each cluster
for cluster in clusters:
print("Cluster: ", cluster)
print("Experts: ", clusters[cluster])
with open("mbc_clusters.json", "w") as f:
import json
json.dump(clusters, f)
After clustering, we can train join experts on similar tasks. This will increase transfer and reduce interference! To do so, we can use the train_experts.py
script included in the repository. This will take some time, so feel free to skip this step (we provide another MBC library!)
import copy
from mttl.logging import setup_logging
if train_library:
train_mbc_config = copy.deepcopy(train_config)
mbc_library = ExpertLibrary.get_expert_library("local://trained_gpt125m_mbc_experts_colab", create=True)
for cluster in clusters:
print("Fine-tuning on cluster: ", cluster, " with tasks: ", clusters[cluster])
# set the task name to the task we want to finetune on
train_mbc_config.finetune_task_name = ",".join(clusters[cluster])
# initialize an expert model
model = ExpertModel(
ExpertModelConfig(
base_model=train_mbc_config.model,
expert_name=cluster,
task_name=train_mbc_config.finetune_task_name,
modifier_config=train_mbc_config.modifier_config,
),
device_map="cuda",
precision=train_mbc_config.precision,
)
# minimal training code to finetune the model on examples from the task
dm = get_datamodule(train_mbc_config)
print(len(dm.train_dataset) // train_mbc_config.train_batch_size)
train_model(train_mbc_config, model, dm)
# add the expert to the library!
expert_instance = model.as_expert(training_config=train_mbc_config.to_dict())
mbc_library.add_expert(expert_instance, force=True)
else:
mbc_library = ExpertLibrary.get_expert_library("hf://sordonia/trained_gpt125m_mbc_experts_colab").clone("local://trained_gpt125m_mbc_experts_colab")
# Let's see which experts are in the library... :-)
for expert_name in mbc_library.keys():
print("Expert: ", expert_name, " with config: ", mbc_library[expert_name].expert_config)
Expert: cluster_0 with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Expert: cluster_1 with config: LoRAConfig(modify_modules='.*', modify_layers='q_proj|v_proj|k_proj', tie_params=None, lora_rank=4, lora_alpha=1.0, lora_dropout=0.0, lora_init_b_random=False)
Let's evaluate both the "private" experts and the MBC experts on in-distribution tasks!
We will compare Rouge-L for:
- oracle routing: use the correct expert for each task
- the average task expert: just average experts and use the resulting expert for all the tasks
- the oracle MBC expert: upon seeing a task, it uses the cluster expert comprising that task
- the average MBC expert: average MBC experts and use the resulting expert for all the tasks
import torch
import copy
from mttl.arguments import ExpertConfig
from mttl.datamodule.base import get_datamodule
from mttl.models.containers.selectors import TaskNameSelectorConfig, ArrowSelectorConfig
from mttl.models.containers.selectors.base import UniformSelectorConfig
from mttl.models.containers.selectors.poly_selector import PolySelectorDirectConfigUniform
from mttl.models.expert_model import MultiExpertModel, MultiExpertModelConfig
from mttl.evaluators.rouge_evaluator import RougeEvaluator
from mttl.models.library.expert_library import ExpertLibrary
eval_config = copy.deepcopy(train_config)
# let's eval on all the 8 tasks
eval_config.finetune_task_name = ",".join([
"wiqa_what_is_the_final_step_of_the_following_process",
"sciq_Multiple_Choice",
"adversarial_qa_droberta_answer_the_following_q",
"duorc_SelfRC_question_answering",
"cos_e_v1_11_description_question_option_id",
"race_high_Select_the_best_answer",
"race_high_Select_the_best_answer_generate_span_",
"wiki_qa_Is_This_True_",
"quail_description_context_question_text",
"wiki_hop_original_explain_relation"
])
datamodule = get_datamodule(eval_config, for_generation=True)
evaluator = RougeEvaluator(datamodule)
device_map="cuda" if torch.cuda.is_available() else "cpu"
print("Test examples:", len(datamodule.test_dataset))
# the oracle model uses the "task name" in the forward pass, the task name is passed by the dataloader
model = MultiExpertModel.from_pretrained_library(
"local://trained_gpt125m_experts_colab",
selector_config=TaskNameSelectorConfig(),
device_map=device_map
)
oracle_rouge = evaluator.evaluate(model, split="test")
# now replace selector for lora to a uniform merging of experts during the forward pass
# no task information is used!
model.set_selector("lora", UniformSelectorConfig())
# save model + selector for future re-use
model.save_pretrained("./trained_gpt125m_uniform_model")
uniform_rouge = evaluator.evaluate(model, split="test")
# Now let's test MBC experts that leverage certain multi-task training
# the oracle
model = MultiExpertModel.from_pretrained_library(
"local://trained_gpt125m_mbc_experts_colab",
selector_config=TaskNameSelectorConfig(),
device_map=device_map
)
oracle_mbc_rouge = evaluator.evaluate(model, split="test")
model.set_selector("lora", UniformSelectorConfig())
uniform_mbc_rouge = evaluator.evaluate(model, split="test")
/usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:617: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.
warnings.warn(
Test examples: 80
Adding experts...: 0%| | 0/10 [00:00<?, ?expert/s]
0%| | 0/10 [00:00<?, ?it/s]
0%| | 0/10 [00:00<?, ?it/s]
Adding experts...: 0%| | 0/2 [00:00<?, ?expert/s]
0%| | 0/10 [00:00<?, ?it/s]
0%| | 0/10 [00:00<?, ?it/s]
# Let's do some plot
import matplotlib.pyplot as plt
plt.bar(["oracle", "uniform", "oracle_mbc", "uniform_mbc"], [oracle_rouge, uniform_rouge, oracle_mbc_rouge, uniform_mbc_rouge])
plt.show()
Ok we can see that MBC outperforms uniform and also merge better (under uniform merging), let's now compute Arrow!
Arrow selects experts that have "something to say" about a given input: we will select experts that most align with every input hidden representations. With MTTL, Arrow can be computed with the ArrowTransform applied to a library of experts as follows:
from mttl.models.library.library_transforms import ArrowTransformConfig, ArrowTransform
from mttl.models.containers.selectors import ArrowSelectorConfig
arrow_transform_config = ArrowTransformConfig()
arrow_transform = ArrowTransform(arrow_transform_config)
# persist the prototypes in the library using arrow_transform_config.name
arrow_transform.transform("local://trained_gpt125m_experts_colab", persist=True)
# we inform the selector that we have to read the prototypes corresponding to our config
arrow_selector_config = ArrowSelectorConfig(top_k=2, selector_data_id=arrow_transform_config.save_name)
model = MultiExpertModel.from_pretrained_library(
"local://trained_gpt125m_experts_colab",
selector_config=arrow_selector_config,
device_map="cuda"
)
# save arrowed model for later!
model.save_pretrained("./trained_gpt125m_arrow_model")
arrow_rouge = evaluator.evaluate(model, split="test")
# do the same for MBC library
arrow_transform.transform("local://trained_gpt125m_mbc_experts_colab", persist=True)
# we inform the selector that we have to read the prototypes corresponding to our config
arrow_selector_config = ArrowSelectorConfig(top_k=2, selector_data_id=arrow_transform_config.save_name)
model = MultiExpertModel.from_pretrained_library(
"local://trained_gpt125m_mbc_experts_colab",
selector_config=arrow_selector_config,
device_map="cuda"
)
arrow_mbc_rouge = evaluator.evaluate(model, split="test")
Adding experts...: 0%| | 0/10 [00:00<?, ?expert/s]
0%| | 0/10 [00:00<?, ?it/s]
Adding experts...: 0%| | 0/2 [00:00<?, ?expert/s]
0%| | 0/10 [00:00<?, ?it/s]
# Let's redo some plots
import matplotlib.pyplot as plt
x_values = ["oracle", "uniform", "arrow", "oracle_mbc", "uniform_mbc", "arrow_mbc"]
y_values = [
oracle_rouge, uniform_rouge, arrow_rouge,
oracle_mbc_rouge, uniform_mbc_rouge, arrow_mbc_rouge
]
colors = ["blue", "blue", "red", "blue", "blue", "red"]
plt.figure(figsize=(12, 6))
plt.bar(x_values, y_values, color=colors)
plt.show()
We can see that Arrow greatly fills the gap w.r.t. oracle routing for the private library; conversely for the MBC library it seems to suffer a bit w.r.t. a standard uniform merging of the experts.. Too much interference in the prototypes?
# Comuting PhatGoose embeddings will take some time as PhatGOOSE requires a few gradient steps for each expert to train the prototypes
# there will be one optimization per expert, so 10 optimizations in total
from mttl.models.library.library_transforms import PhatgooseTransformConfig, PhatgooseTransform
from mttl.models.containers.selectors import PhatgooseSelectorConfig
pg_config = PhatgooseTransformConfig(n_steps=50, learning_rate=1e-3, warmup_ratio=0.0)
pg_transform = PhatgooseTransform(pg_config)
pg_transform.transform("local://trained_gpt125m_experts_colab", persist=True)
# persist the prototypes in the library using pg_config.save_name
pg_selector_config = PhatgooseSelectorConfig(top_k=2, selector_data_id=pg_config.save_name)
model = MultiExpertModel.from_pretrained_library(
"local://trained_gpt125m_experts_colab",
selector_config=pg_selector_config,
device_map="cuda"
)
# save pg model for later!
model.save_pretrained("./trained_gpt125m_pg_model")
pg_rouge = evaluator.evaluate(model, split="test")
pg_transform.transform("local://trained_gpt125m_mbc_experts_colab", persist=True)
# we inform the selector that we have to read the prototypes corresponding to our config
model = MultiExpertModel.from_pretrained_library(
"local://trained_gpt125m_mbc_experts_colab",
selector_config=pg_selector_config,
device_map="cuda"
)
pg_mbc_rouge = evaluator.evaluate(model, split="test")
0%| | 0/50 [00:00<?, ?it/s]
Filtering task names (num_proc=16): 0%| | 0/26400 [00:00<?, ? examples/s]
Creating train set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating valid set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating test set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
0%| | 0/50 [00:00<?, ?it/s]
0%| | 0/50 [00:00<?, ?it/s]
Filtering task names (num_proc=16): 0%| | 0/26400 [00:00<?, ? examples/s]
Creating train set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating valid set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating test set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
0%| | 0/50 [00:00<?, ?it/s]
Filtering task names (num_proc=16): 0%| | 0/26400 [00:00<?, ? examples/s]
Creating train set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating valid set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating test set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
0%| | 0/50 [00:00<?, ?it/s]
Filtering task names (num_proc=16): 0%| | 0/26400 [00:00<?, ? examples/s]
Creating train set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating valid set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating test set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
0%| | 0/50 [00:00<?, ?it/s]
0%| | 0/50 [00:00<?, ?it/s]
Filtering task names (num_proc=16): 0%| | 0/26400 [00:00<?, ? examples/s]
Creating train set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating valid set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating test set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
0%| | 0/50 [00:00<?, ?it/s]
Filtering task names (num_proc=16): 0%| | 0/26400 [00:00<?, ? examples/s]
Creating train set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating valid set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
Creating test set (num_proc=16): 0%| | 0/100 [00:00<?, ? examples/s]
0%| | 0/50 [00:00<?, ?it/s]
0%| | 0/50 [00:00<?, ?it/s]
Adding experts...: 0%| | 0/10 [00:00<?, ?expert/s]
0%| | 0/10 [00:00<?, ?it/s]
Filtering task names (num_proc=16): 0%| | 0/26400 [00:00<?, ? examples/s]
Creating train set (num_proc=16): 0%| | 0/500 [00:00<?, ? examples/s]
Creating valid set (num_proc=16): 0%| | 0/500 [00:00<?, ? examples/s]
Creating test set (num_proc=16): 0%| | 0/500 [00:00<?, ? examples/s]
0%| | 0/50 [00:00<?, ?it/s]
Filtering task names (num_proc=16): 0%| | 0/26400 [00:00<?, ? examples/s]
Creating train set (num_proc=16): 0%| | 0/500 [00:00<?, ? examples/s]
Creating valid set (num_proc=16): 0%| | 0/500 [00:00<?, ? examples/s]
Creating test set (num_proc=16): 0%| | 0/500 [00:00<?, ? examples/s]
0%| | 0/50 [00:00<?, ?it/s]
Adding experts...: 0%| | 0/2 [00:00<?, ?expert/s]
0%| | 0/10 [00:00<?, ?it/s]
# Let's redo some plots
import matplotlib.pyplot as plt
x_values = ["oracle", "uniform", "arrow", "pg", "oracle_mbc", "uniform_mbc", "arrow_mbc", "pg_mbc"]
y_values = [
oracle_rouge, uniform_rouge, arrow_rouge, pg_rouge,
oracle_mbc_rouge, uniform_mbc_rouge, arrow_mbc_rouge, pg_mbc_rouge
]
colors = ["blue", "blue", "red", "purple", "blue", "blue", "red", "purple"]
plt.figure(figsize=(12, 6))
plt.bar(x_values, y_values, color=colors)
plt.show()
We will now evaluate both the uniform merged model and the Arrow model on some downstream tasks, e.g. Arc-Easy.
# let's try some out-of-distribution evaluation now!
from mttl.evaluators.base import EvaluatorRunner, setup_evaluators
# we will run on Arc-Easy
evaluation_task = "arc-easy"
with torch.no_grad():
runner: EvaluatorRunner = setup_evaluators(
model_type=train_config.model,
model_family=train_config.model_family,
max_input_length=train_config.max_input_length,
max_output_length=train_config.max_output_length,
predict_batch_size=train_config.predict_batch_size,
truncation_side=train_config.truncation_side,
tasks=evaluation_task
)
# base model
model = MultiExpertModel(MultiExpertModelConfig(base_model="EleutherAI/gpt-neo-125m"), device_map="cuda", precision="32")
base_perf = runner.run(model)
# uniform average of private library
model = MultiExpertModel.from_pretrained("./trained_gpt125m_uniform_model", device_map="cuda", precision="32")
uniform_perf = runner.run(model)
# arrowed private model
model = MultiExpertModel.from_pretrained("./trained_gpt125m_arrow_model", device_map="cuda", precision="32")
arrow_perf = runner.run(model)
# pg private model
model = MultiExpertModel.from_pretrained("./trained_gpt125m_pg_model", device_map="cuda", precision="32")
pg_perf = runner.run(model)
README.md: 0%| | 0.00/9.00k [00:00<?, ?B/s]
train-00000-of-00001.parquet: 0%| | 0.00/331k [00:00<?, ?B/s]
test-00000-of-00001.parquet: 0%| | 0.00/346k [00:00<?, ?B/s]
validation-00000-of-00001.parquet: 0%| | 0.00/86.1k [00:00<?, ?B/s]
Generating train split: 0%| | 0/2251 [00:00<?, ? examples/s]
Generating test split: 0%| | 0/2376 [00:00<?, ? examples/s]
Generating validation split: 0%| | 0/570 [00:00<?, ? examples/s]
Map (num_proc=16): 0%| | 0/2251 [00:00<?, ? examples/s]
Map (num_proc=16): 0%| | 0/2376 [00:00<?, ? examples/s]
Map (num_proc=16): 0%| | 0/570 [00:00<?, ? examples/s]
0%| | 0/297 [00:00<?, ?it/s]
0%| | 0/297 [00:00<?, ?it/s]
WARNING:mttl:Library artifacts not loaded for ArrowSelector, using zero initialization.
0%| | 0/297 [00:00<?, ?it/s]
WARNING:mttl:Library artifacts not loaded for PhatgooseSelector, using zero initialization.
0%| | 0/297 [00:00<?, ?it/s]
x_values = ["base", "uniform", "arrow", "pg"]
y_values = [
base_perf['mean'], uniform_perf['mean'], arrow_perf['mean'], pg_perf['mean']
]
colors = ["blue", "blue", "red", "purple"]
plt.figure()
plt.bar(x_values, y_values, color=colors)
plt.ylim([0.3,0.45])
plt.show()