Для использования информации из видео предварительно были выделены видео-признаки при помощи lip embedding extractor
.
Для этого:
- выделялась область с губами
- применялась модель, описанная ниже
- брались факторы с последнего
GRU
слоя (размерность - 512)
The state-of-art PyTorch implementation of 'LipNet: End-to-End Sentence-level Lipreading' by Yannis M. Assael, Brendan Shillingford, Shimon Whiteson, and Nando de Freitas (https://arxiv.org/abs/1611.01599). This version achieves the best performance in all evaluation metrics.
Scenario | Image Size (W x H) | CER | WER |
---|---|---|---|
Unseen speakers (Origin) | 100 x 50 | 6.7% | 13.6% |
Overlapped speakers (Origin) | 100 x 50 | 2.0% | 5.6% |
Unseen speakers (Ours) | 128 x 64 | 6.7% | 13.3% |
Overlapped speakers (Ours) | 128 x 64 | 1.9% | 4.6% |
Notes:
- Contribution in sharing the results of this model is highly appreciated
Scenario | Train | Validation |
---|---|---|
Unseen speakers (Origin) | 28775 | 3971 |
Overlapped speakers (Origin) | 24331 | 8415 |
Unseen speakers (Ours) | 28837 | 3986 |
Overlapped speakers (Ours) | 24408 | 8415 |
Link of processed lip images and text:
BaiduYun: 链接:https://pan.baidu.com/s/1I51Xf-DzP1UgrXF-S0L5tg 密码:jf0l
Google Drive: https://drive.google.com/drive/folders/1Wn2EJw2101nF59eNDXEto6qXqfgDDucL
Download all parts and concatenate the files using the command
cat GRID_LIP_160x80_TXT.zip.* > GRID_LIP_160x80_TXT.zip
unzip GRID_LIP_160x80_TXT.zip
rm GRID_LIP_160x80_TXT.zip
We provide examples of face detection and alignment in scripts/
folder for your own dataset.
python main.py
Data path and hyperparameters are configured in options.py
. Please pay attention that you may need to modify options.py
to make the program work as expected.
- PyTorch 1.0+
- opencv-python
@article{assael2016lipnet,
title={LipNet: End-to-End Sentence-level Lipreading},
author={Assael, Yannis M and Shillingford, Brendan and Whiteson, Shimon and de Freitas, Nando},
journal={GPU Technology Conference},
year={2017},
url={https://github.com/Fengdalu/LipNet-PyTorch}
}
The MIT License