Skip to content

splat-r/splatr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SplatR: Experience Goal Visual Rearrangement with 3D Gaussian Splatting and Dense Feature Matching

Arjun P S · Andrew Melnik · Gora Chand Nandi

We present a novel approach that uses 3D Gaussian Splatting for experience goal visual rearrangement.

Logo

Installation

Clone the following repositories

git clone https://github.com/splat-r/splatr/
cd splatr
git clone https://github.com/facebookresearch/dinov2.git

SplatR was benchmarked for Python 3.9, Cuda 11.8, Torch 2.0.1. The requirements.txt file contains the dependencies for Dinov2 as well, so there's no need to install it from source.

conda create -n splatr python=3.9
conda activate splatr
pip install xformers==0.0.18
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install pytorch3d==0.7.4 -c pytorch3d
pip install -r requirements.txt

Download SAM checkpoint ViT-H and add it to ckpt\. To use a different model type, change the model type and path in \rearrange\scripts\config.py.

Rearrange task

To run the rearrange task for a random scene, set _random_scene_ = True in \rearrange\scripts\config.py and to run it for a specific scene, set _random_scene_ = False and _scene_id_=<unique_id_of_the_scene>.

After setting that, run this to perform the rearrange task -

python rearrange_task.py

The data collected during the Walkthrough Phase will be stored in \rearrange\test\dataset\<episode_id>\, the visualizations of the run will be avilable in \rearrange\test\runs\<episode_id>\, and the final metrics will be saved in \rearrange\metrics\. The dataset stored in \rearrange\test\dataset\<episode_id>\ will be in the COLMAP format.

\rearrange\scripts\config.py contain Gaussian Splat configuration, parameters of the models used (DINO, CLIP, SAM), AI2THOR scene parameters and map parameters.

Acknowledgement

We use the following open-source code in our work

Citation

If you find our paper and code useful, please cite us

@misc{s2024splatrexperiencegoal,
      title={SplatR : Experience Goal Visual Rearrangement with 3D Gaussian Splatting and Dense Feature Matching}, 
      author={Arjun P S and Andrew Melnik and Gora Chand Nandi},
      year={2024},
      eprint={2411.14322},
      archivePrefix={arXiv},
      primaryClass={cs.RO},
      url={https://arxiv.org/abs/2411.14322}, 
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published