-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
auto_arima #277
Comments
Function: #' Boilerplate Workflow
#'
#' @family Boiler_Plate
#' @family arima
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details
#' This uses the `modeltime::arima_reg()` with the `engine` set to `arima`
#'
#' @seealso \url{https://business-science.github.io/modeltime/reference/arima_reg.html}
#'
#' @description This is a boilerplate function to create automatically the following:
#' - recipe
#' - model specification
#' - workflow
#' - tuned model (grid ect)
#' - calibration tibble and plot
#'
#' @param .data The data being passed to the function. The time-series object.
#' @param .date_col The column that holds the datetime.
#' @param .value_col The column that has the value
#' @param .formula The formula that is passed to the recipe like `value ~ .`
#' @param .rsamp_obj The rsample splits object
#' @param .prefix Default is `ts_arima`
#' @param .tune Defaults to TRUE, this creates a tuning grid and tuned model.
#' @param .grid_size If `.tune` is TRUE then the `.grid_size` is the size of the
#' tuning grid.
#' @param .num_cores How many cores do you want to use. Default is 1
#' @param .cv_assess How many observations for assess. See [timetk::time_series_cv()]
#' @param .cv_skip How many observations to skip. See [timetk::time_series_cv()]
#' @param .cv_slice_limit How many slices to return. See [timetk::time_series_cv()]
#' @param .best_metric Default is "rmse". See [modeltime::default_forecast_accuracy_metric_set()]
#' @param .bootstrap_final Not yet implemented.
#'
#' @examples
#' \dontrun{
#' library(dplyr)
#'
#' data <- AirPassengers %>%
#' ts_to_tbl() %>%
#' select(-index)
#'
#' splits <- time_series_split(
#' data
#' , date_col
#' , assess = 12
#' , skip = 3
#' , cumulative = TRUE
#' )
#'
#' ts_auto_arima <- ts_auto_arima(
#' .data = data,
#' .num_cores = 5,
#' .date_col = date_col,
#' .value_col = value,
#' .rsamp_obj = splits,
#' .formula = value ~ .,
#' .grid_size = 20,
#' .cv_slice_limit = 2
#' )
#'
#' ts_auto_arima$recipe_info
#' }
#'
#' @return
#' A list
#'
#' @export
#'
ts_auto_arima <- function(.data, .date_col, .value_col, .formula, .rsamp_obj,
.prefix = "ts_arima", .tune = TRUE, .grid_size = 10,
.num_cores = 1, .cv_assess = 12, .cv_skip = 3,
.cv_slice_limit = 6, .best_metric = "rmse",
.bootstrap_final = FALSE){
# Tidyeval ----
date_col_var_expr <- rlang::enquo(.date_col)
value_col_var_expr <- rlang::enquo(.value_col)
sampling_object <- .rsamp_obj
# Cross Validation
cv_assess = as.numeric(.cv_assess)
cv_skip = as.numeric(.cv_skip)
cv_slice = as.numeric(.cv_slice_limit)
# Tuning Grid
grid_size <- as.numeric(.grid_size)
num_cores <- as.numeric(.num_cores)
best_metric <- as.character(.best_metric)
# Data and splits
splits <- .rsamp_obj
data_tbl <- dplyr::as_tibble(.data)
# Checks ----
if (rlang::quo_is_missing(date_col_var_expr)){
rlang::abort(
message = "'.date_col' must be supplied.",
use_cli_format = TRUE
)
}
if (rlang::quo_is_missing(value_col_var_expr)){
rlang::abort(
message = "'.value_col' must be supplied.",
use_cli_format = TRUE
)
}
if (!inherits(x = splits, what = "rsplit")){
rlang::abort(
message = "'.rsamp_obj' must be have class rsplit, use the rsample package.",
use_cli_format = TRUE
)
}
# Recipe ----
# Get the initial recipe call
recipe_call <- get_recipe_call(match.call())
rec_syntax <- paste0(.prefix, "_recipe") %>%
assign_value(!!recipe_call)
rec_obj <- recipes::recipe(formula = .formula, data = data_tbl)
# Tune/Spec ----
if (.tune){
model_spec <- modeltime::arima_reg(
seasonal_period = tune::tune()
, non_seasonal_ar = tune::tune()
, non_seasonal_differences = tune::tune()
, non_seasonal_ma = tune::tune()
, seasonal_ar = tune::tune()
, seasonal_differences = tune::tune()
, seasonal_ma = tune::tune()
)
} else {
model_spec <- modeltime::arima_reg()
}
model_spec <- model_spec %>%
parsnip::set_mode(mode = "regression") %>%
parsnip::set_engine("arima")
# Workflow ----
wflw <- workflows::workflow() %>%
workflows::add_recipe(rec_obj) %>%
workflows::add_model(model_spec)
# Tuning Grid ----
if (.tune){
# Start parallel backend
modeltime::parallel_start(num_cores)
tuning_grid_spec <- dials::grid_latin_hypercube(
hardhat::extract_parameter_set_dials(model_spec),
size = grid_size
)
# Make TS CV ----
tscv <- timetk::time_series_cv(
data = rsample::training(splits),
date_var = {{date_col_var_expr}},
cumulative = TRUE,
assess = cv_assess,
skip = cv_skip,
slice_limit = cv_slice
)
# Tune the workflow
tuned_results <- wflw %>%
tune::tune_grid(
resamples = tscv,
grid = tuning_grid_spec,
metrics = modeltime::default_forecast_accuracy_metric_set()
)
# Get the best result set by a specified metric
best_result_set <- tuned_results %>%
tune::show_best(metric = best_metric, n = 1)
# Plot results
tune_results_plt <- tuned_results %>%
tune::autoplot() +
ggplot2::theme_minimal() +
ggplot2::geom_smooth(se = FALSE)
# Make final workflow
wflw_fit <- wflw %>%
tune::finalize_workflow(
tuned_results %>%
tune::show_best(metric = best_metric, n = Inf) %>%
dplyr::slice(1)
) %>%
parsnip::fit(rsample::training(splits))
# Stop parallel backend
modeltime::parallel_stop()
} else {
wflw_fit <- wflw %>%
parsnip::fit(rsample::training(splits))
}
# Calibrate and Plot ----
cap <- healthyR.ts::calibrate_and_plot(
wflw_fit,
.splits_obj = splits,
.data = data_tbl,
.interactive = TRUE,
.print_info = FALSE
)
# Return ----
output <- list(
recipe_info = list(
recipe_call = recipe_call,
recipe_syntax = rec_syntax,
rec_obj = rec_obj
),
model_info = list(
model_spec = model_spec,
wflw = wflw,
fitted_wflw = wflw_fit,
was_tuned = ifelse(.tune, "tuned", "not_tuned")
),
model_calibration = list(
plot = cap$plot,
calibration_tbl = cap$calibration_tbl,
model_accuracy = cap$model_accuracy
)
)
if (.tune){
output$tuned_info = list(
tuning_grid = tuning_grid_spec,
tscv = tscv,
tuned_results = tuned_results,
grid_size = grid_size,
best_metric = best_metric,
best_result_set = best_result_set,
tuning_grid_plot = tune_results_plt,
plotly_grid_plot = plotly::ggplotly(tune_results_plt)
)
}
return(invisible(output))
}
```
__Example:__
```r
library(dplyr)
data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)
splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE
)
ts_auto_arima <- ts_auto_arima(
.data = data,
.num_cores = 5,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 20,
.cv_slice_limit = 2
)
> ts_auto_arima$recipe_info
$recipe_call
recipe(.data = data, .date_col = date_col, .value_col = value,
.formula = value ~ ., .rsamp_obj = splits, .grid_size = 20,
.num_cores = 5, .cv_slice_limit = 2)
$recipe_syntax
[1] "ts_arima_recipe <-"
[2] "\n recipe(.data = data, .date_col = date_col, .value_col = value, .formula = value ~ \n ., .rsamp_obj = splits, .grid_size = 20, .num_cores = 5, .cv_slice_limit = 2)"
$rec_obj
Recipe
Inputs:
role #variables
outcome 1
predictor 1
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
No description provided.
The text was updated successfully, but these errors were encountered: