Skip to content

Commit

Permalink
[Jenkins] auto-formatting by clang-format version 10.0.0-4ubuntu1
Browse files Browse the repository at this point in the history
  • Loading branch information
stan-buildbot committed Feb 28, 2023
1 parent 003fd91 commit 0c8afa4
Showing 1 changed file with 28 additions and 52 deletions.
80 changes: 28 additions & 52 deletions src/stan/model/model_base.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -133,8 +133,7 @@ class model_base : public prob_grad {
*/
virtual void constrained_param_names(std::vector<std::string>& param_names,
bool include_tparams = true,
bool include_gqs = true) const
= 0;
bool include_gqs = true) const = 0;

/**
* Set the specified sequence of parameter names to the
Expand Down Expand Up @@ -163,8 +162,7 @@ class model_base : public prob_grad {
*/
virtual void unconstrained_param_names(std::vector<std::string>& param_names,
bool include_tparams = true,
bool include_gqs = true) const
= 0;
bool include_gqs = true) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -175,8 +173,8 @@ class model_base : public prob_grad {
* @param[in,out] msgs message stream
* @return log density for specified parameters
*/
virtual double log_prob(Eigen::VectorXd& params_r, std::ostream* msgs) const
= 0;
virtual double log_prob(Eigen::VectorXd& params_r,
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -188,8 +186,7 @@ class model_base : public prob_grad {
* @return log density for specified parameters
*/
virtual math::var log_prob(Eigen::Matrix<math::var, -1, 1>& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -205,8 +202,7 @@ class model_base : public prob_grad {
* @return log density for specified parameters
*/
virtual double log_prob_jacobian(Eigen::VectorXd& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -222,8 +218,7 @@ class model_base : public prob_grad {
* @return log density for specified parameters
*/
virtual math::var log_prob_jacobian(Eigen::Matrix<math::var, -1, 1>& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -240,8 +235,7 @@ class model_base : public prob_grad {
* @return log density for specified parameters
*/
virtual double log_prob_propto(Eigen::VectorXd& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -253,8 +247,7 @@ class model_base : public prob_grad {
* @return log density for specified parameters
*/
virtual math::var log_prob_propto(Eigen::Matrix<math::var, -1, 1>& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -275,8 +268,7 @@ class model_base : public prob_grad {
* @return log density for specified parameters
*/
virtual double log_prob_propto_jacobian(Eigen::VectorXd& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -292,8 +284,7 @@ class model_base : public prob_grad {
* @return log density for specified parameters
*/
virtual math::var log_prob_propto_jacobian(
Eigen::Matrix<math::var, -1, 1>& params_r, std::ostream* msgs) const
= 0;
Eigen::Matrix<math::var, -1, 1>& params_r, std::ostream* msgs) const = 0;

/**
* Convenience template function returning the log density for the
Expand Down Expand Up @@ -341,8 +332,7 @@ class model_base : public prob_grad {
*/
virtual void transform_inits(const io::var_context& context,
Eigen::VectorXd& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Convert the specified sequence of unconstrained parameters to a
Expand All @@ -365,8 +355,7 @@ class model_base : public prob_grad {
virtual void write_array(stan::rng_t& base_rng, Eigen::VectorXd& params_r,
Eigen::VectorXd& params_constrained_r,
bool include_tparams = true, bool include_gqs = true,
std::ostream* msgs = 0) const
= 0;
std::ostream* msgs = 0) const = 0;

// TODO(carpenter): cut redundant std::vector versions from here ===

Expand All @@ -383,8 +372,8 @@ class model_base : public prob_grad {
* @return log density for specified parameters
*/
virtual double log_prob(std::vector<double>& params_r,
std::vector<int>& params_i, std::ostream* msgs) const
= 0;
std::vector<int>& params_i,
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -400,8 +389,7 @@ class model_base : public prob_grad {
*/
virtual math::var log_prob(std::vector<math::var>& params_r,
std::vector<int>& params_i,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -421,8 +409,7 @@ class model_base : public prob_grad {
*/
virtual double log_prob_jacobian(std::vector<double>& params_r,
std::vector<int>& params_i,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -442,8 +429,7 @@ class model_base : public prob_grad {
*/
virtual math::var log_prob_jacobian(std::vector<math::var>& params_r,
std::vector<int>& params_i,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -464,8 +450,7 @@ class model_base : public prob_grad {
*/
virtual double log_prob_propto(std::vector<double>& params_r,
std::vector<int>& params_i,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -481,8 +466,7 @@ class model_base : public prob_grad {
*/
virtual math::var log_prob_propto(std::vector<math::var>& params_r,
std::vector<int>& params_i,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -507,8 +491,7 @@ class model_base : public prob_grad {
*/
virtual double log_prob_propto_jacobian(std::vector<double>& params_r,
std::vector<int>& params_i,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -528,8 +511,7 @@ class model_base : public prob_grad {
*/
virtual math::var log_prob_propto_jacobian(std::vector<math::var>& params_r,
std::vector<int>& params_i,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Convenience template function returning the log density for the
Expand Down Expand Up @@ -584,8 +566,7 @@ class model_base : public prob_grad {
virtual void transform_inits(const io::var_context& context,
std::vector<int>& params_i,
std::vector<double>& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Convert the specified sequence of unconstrained parameters to a
Expand All @@ -610,8 +591,7 @@ class model_base : public prob_grad {
std::vector<int>& params_i,
std::vector<double>& params_r_constrained,
bool include_tparams = true, bool include_gqs = true,
std::ostream* msgs = 0) const
= 0;
std::ostream* msgs = 0) const = 0;

#ifdef STAN_MODEL_FVAR_VAR

Expand All @@ -626,8 +606,7 @@ class model_base : public prob_grad {
*/
virtual math::fvar<math::var> log_prob(
Eigen::Matrix<math::fvar<math::var>, -1, 1>& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -644,8 +623,7 @@ class model_base : public prob_grad {
*/
virtual math::fvar<math::var> log_prob_jacobian(
Eigen::Matrix<math::fvar<math::var>, -1, 1>& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -658,8 +636,7 @@ class model_base : public prob_grad {
*/
virtual math::fvar<math::var> log_prob_propto(
Eigen::Matrix<math::fvar<math::var>, -1, 1>& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;

/**
* Return the log density for the specified unconstrained
Expand All @@ -676,8 +653,7 @@ class model_base : public prob_grad {
*/
virtual math::fvar<math::var> log_prob_propto_jacobian(
Eigen::Matrix<math::fvar<math::var>, -1, 1>& params_r,
std::ostream* msgs) const
= 0;
std::ostream* msgs) const = 0;
#endif
};

Expand Down

0 comments on commit 0c8afa4

Please sign in to comment.