All branches in this repository are development branches. The latest stable release can be found in the releases section.
Savvy is the official C++ interface for the SAV file format and offers seamless support for BCF and VCF files.
Since the release of version 2.0, Savvy no longer supports writing of SAV 1.x files but will continue to support reading of existing 1.x files.
The easiest way to install Savvy and its dependencies from source is to use cget.
cget install --prefix <install_prefix> statgen/savvy # default <install_prefix> is ./cget/
Installing binaries of Savvy and its dependencies can be done with conda.
conda install -c conda-forge -c bioconda savvy
CMakeLists.txt:
# Configure with cmake option: -DCMAKE_TOOLCHAIN_FILE=<install_prefix>/cget/cget.cmake
find_package(savvy REQUIRED)
add_executable(prog main.cpp)
target_link_libraries(prog savvy)
#include <savvy/reader.hpp>
savvy::reader f("chr1.sav");
savvy::variant var;
std::vector<int> geno;
while (f >> var)
{
var.position();
var.chromosome();
var.ref();
var.alts();
int ac;
var.get_info("AC", ac);
var.get_format("GT", geno);
for (int allele : geno)
{
...
}
}
In addition to the genomic region queries that CSI indices enable for VCF/BCF files, S1R indices also enable SAV files to be queried by record offset.
#include <savvy/reader.hpp>
savvy::reader f("chrX.sav");
savvy::variant var;
f.reset_bounds(savvy::genomic_region("X", 60001, 2699520));
while (f >> var)
{
...
}
// Shorthand
f.reset_bounds({"X", 154931044, 155260560});
while (f >> var)
{
...
}
#include <savvy/reader.hpp>
savvy::reader f("chr1.sav");
// Get the 10,000th record through the 19,999th record (0-based amd non-inclusive)
f.reset_bounds(savvy::slice_bounds(10000, 20000));
// Shorthand
f.reset_bounds({20000, 30000});
#include <savvy/reader.hpp>
savvy::reader f("chr1.sav");
std::vector<std::string> requested = {"ID001","ID002","ID003"};
std::vector<std::string> intersect = f.subset_samples({requested.begin(), requested.end()});
savvy::variant var;
while (f.read(var))
{
...
}
#include <savvy/reader.hpp>
#include <savvy/writer.hpp>
savvy::reader in("in.sav");
savvy::writer out("out.bcf", savvy::file::format::bcf, in.headers(), in.samples());
savvy::variant var;
while (in >> var)
out << var;
#include <savvy/writer.hpp>
std::vector<std::string> sample_ids = {"ID1", "ID2", "ID3"};
std::vector<std::pair<std::string, std::string>> headers = {
{"fileformat", "VCFv4.2"},
{"FILTER", "<ID=PASS,Description=\"All filters passed\">"},
{"contig", "<ID=chr1,length=248956422>"},
{"INFO", "<ID=AC,Number=A,Type=Integer,Description=\"Alternate Allele Counts\">"},
{"INFO", "<ID=AN,Number=1,Type=Integer,Description=\"Total Number Allele Counts\">"},
{"FORMAT", "<ID=GT,Type=Integer,Description=\"Genotype\">"}
};
savvy::writer out("out.sav", savvy::file::format::sav2, headers, sample_ids);
std::vector<std::int8_t> geno = {0,0,1,0,0,1};
savvy::variant var("chr1", 10000000, "A", {"AC"}); // chrom, pos, ref, alts
var.set_info("AC", std::count(geno.begin(), geno.end(), 1));
var.set_info("AN", geno.size());
var.set_format("GT", geno);
out.write(var);
File manipulation for SAV format.
The import
sub-command generates a SAV file from a BCF or VCF file. An S1R index is automatically generated and appended to the end of the resulting SAV file.
sav import file.bcf file.sav
The export
sub-command can be used to manipulate SAV files and/or convert between file formats.
sav export --regions chr1,chr2:10000-20000 --sample-ids ID1,ID2,ID3 file.sav > file.vcf
Fast concatenation of SAV files (similar to bcftools concat --naive
) can be achieved with the concat
sub-command. This command avoids deserialization of variant data by performing a byte-for-byte copy of compressed variant blocks. The S1R index is also quickly concatenated without having to parse records in the SAV file.
sav concat file1.sav file2.sav > concat.sav
In addition to querying genomic regions, S1R indices can be used to quickly subset records by their offset within a file.
# export first 1,000 records
sav export --slice 0:1000 file.sav > file.vcf
# export second 1,000 records (1,000-1,999)
sav export --slice 1000:2000 file.sav > file.vcf
There are two sub-commands for gathering statistics on sav files. The stat
command parses the entire file to calculate statistics. The stat-index
sub-command only parsed the S1R index, making it a faster alternative for some statistics (e.g., number of variant records, chromosomes, etc.).
sav stat file.sav
sav stat-index file.sav
The sort
sub-command sorts variant records by chromosome and position. It can also be used to sort in descending order, which is supported by S1R indices.
sav sort unsorted.sav > sorted.sav
sav sort --direction desc unsorted.sav > reversed.sav
The head
and rehead
sub-commands are used for retrieving and manipulating header information.
sav head file.sav > header.txt
sav head --sample-ids file.sav > sample_ids.txt
sav rehead --sample-ids new_ids_file.txt old.sav new.sav
Action | Pro | Con |
---|---|---|
Increasing block size | Smaller file size (especially with PBWT) | Reduces precision of random access |
Increasing compression level | Smaller file size | Slower compression speed (decompression not affected) |
Enabling PBWT | Smaller file size when used with some fields | Slower compression and decompression |
docker build -t savvy-packaging - < packaging-dockerfile-ubuntu20
mkdir -p packages
docker run -v $(pwd):/savvy-src -v $(pwd)/packages:/out savvy-packaging /savvy-src/package-linux.sh /savvy-src /out
-DBUILD_TESTS=ON
allows running of tests withmake test
-DBUILD_EVAL=ON
enables building of sav-eval executable used to evaluate deserialization performance-DBUILD_SPARSE_REGRESSION=ON
enables building of sav-at executable