About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
F distribution expected value.
The expected value for a F random variable with numerator degrees of freedom d1 > 0
and denominator degrees of freedom d2 > 0
is defined as
npm install @stdlib/stats-base-dists-f-mean
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var mean = require( '@stdlib/stats-base-dists-f-mean' );
Returns the expected value of a F distribution with parameters d1
(numerator degrees of freedom) and d2
(denominator degrees of freedom).
var v = mean( 4.0, 5.0 );
// returns ~1.667
v = mean( 4.0, 12.0 );
// returns ~1.2
v = mean( 8.0, 4.0 );
// returns 2.0
If provided NaN
as any argument, the function returns NaN
.
var v = mean( NaN, 3.0 );
// returns NaN
v = mean( 3.0, NaN );
// returns NaN
If provided d1 <= 0
, the function returns NaN
.
var v = mean( 0.0, 3.0 );
// returns NaN
v = mean( -1.0, 3.0 );
// returns NaN
If provided d2 <= 2
, the function returns NaN
.
var v = mean( 2.0, 1.8 );
// returns NaN
v = mean( 1.0, -1.0 );
// returns NaN
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var mean = require( '@stdlib/stats-base-dists-f-mean' );
var d1;
var d2;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
d1 = ( randu()*10.0 ) + EPS;
d2 = ( randu()*10.0 ) + EPS;
v = mean( d1, d2 );
console.log( 'd1: %d, d2: %d, E(X;d1,d2): %d', d1.toFixed( 4 ), d2.toFixed( 4 ), v.toFixed( 4 ) );
}
#include "stdlib/stats/base/dists/f/mean.h"
Evaluates the expected value of a F distribution with parameters d1
(numerator degrees of freedom) and d2
(denominator degrees of freedom).
double out = stdlib_base_dists_f_mean( 3.0, 5.0 );
// returns ~1.667
The function accepts the following arguments:
- d1:
[in] double
numerator degrees of freedom. - d2:
[in] double
denominator degrees of freedom.
double stdlib_base_dists_f_mean( const double d1, const double d2 );
#include "stdlib/stats/base/dists/f/mean.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
int main( void ) {
double d1;
double d2;
double y;
int i;
for ( i = 0; i < 25; i++ ) {
d1 = random_uniform( 0.0, 10.0 ) + STDLIB_CONSTANT_FLOAT64_EPS;
d2 = random_uniform( 0.0, 10.0 ) + STDLIB_CONSTANT_FLOAT64_EPS;
y = stdlib_base_dists_f_mean( d1, d2 );
printf( "d1: %lf, d2: %lf, E(X;d1,d2): %lf\n", d1, d2, y );
}
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.