Skip to content

stu00608/My-Torch-Codebook

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Allen's PyTorch Codebook

  • I use this repo as my PyTorch training pipeline template.
  • Trying to implement the model I know using PyTorch.
  • Finally make this repo as a template of Music Generation VAE Project.

TODO

Architecture

...

Models

  1. MNIST Classifier.
  2. Circle AutoEncoder.
    • (x, y) -> Enc -> z{2} -> Dec -> (x, y)
  3. MNIST AutoEncoder.

Environment

conda create torch python=3.8
pip install -r requirements.txt
# pip install jupyter

Run example

python main.py --config circle.yaml

Run in Docker

  • I use pytorch/pytorch:1.12.0-cuda11.3-cudnn8-runtime as the source image.
  • In the future I will implement wandb so that you can visialize every just like running example locally.

Build

  • Remember to set your $MY_WANDB_API.
docker build --build-arg WANDB_API=$MY_WANDB_API -t torch-codebook . --no-cache

Run

# Run bash
docker run --gpus all -it --rm torch-codebook bash

# You can run training command like this
docker run --gpus all -it --rm torch-codebook python main.py --config circle.yaml --gpu_id cuda

Workflow

  1. Create a config yaml file use in workflow.
  2. Create dataset.
  3. Create model.
  4. Create Solver.
  5. Create your main.py to use the solver.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published