- I use this repo as my PyTorch training pipeline template.
- Trying to implement the model I know using PyTorch.
- Finally make this repo as a template of Music Generation VAE Project.
...
- MNIST Classifier.
- Circle AutoEncoder.
- (x, y) -> Enc -> z{2} -> Dec -> (x, y)
- MNIST AutoEncoder.
conda create torch python=3.8
pip install -r requirements.txt
# pip install jupyter
python main.py --config circle.yaml
- I use
pytorch/pytorch:1.12.0-cuda11.3-cudnn8-runtime
as the source image. - In the future I will implement wandb so that you can visialize every just like running example locally.
- Remember to set your
$MY_WANDB_API
.
docker build --build-arg WANDB_API=$MY_WANDB_API -t torch-codebook . --no-cache
# Run bash
docker run --gpus all -it --rm torch-codebook bash
# You can run training command like this
docker run --gpus all -it --rm torch-codebook python main.py --config circle.yaml --gpu_id cuda
- Create a config yaml file use in workflow.
- Create dataset.
- Create model.
- Create Solver.
- Create your
main.py
to use the solver.