Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 50 additions & 0 deletions multiphysics/unsteady_cht/cht_2d_3cylinders.cfg
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: 2D transient cylinder array with CHT couplings %
% Author: O. Burghardt, T. Economon %
% Institution: Chair for Scientific Computing, TU Kaiserslautern %
% Date: March 18, 2021 %
% File Version 7.1.1 "Blackbird" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
SOLVER= MULTIPHYSICS
%
CONFIG_LIST = (flow_cylinder.cfg, solid_cylinder1.cfg, solid_cylinder2.cfg, solid_cylinder3.cfg)
%
MARKER_ZONE_INTERFACE= (cylinder_outer1, cylinder_inner1, cylinder_outer2, cylinder_inner2, cylinder_outer3, cylinder_inner3)
MARKER_CHT_INTERFACE= (cylinder_outer1, cylinder_inner1, cylinder_outer2, cylinder_inner2, cylinder_outer3, cylinder_inner3)
%
TIME_DOMAIN = YES
TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER
TIME_STEP= 0.05
MAX_TIME= 100.0
TIME_ITER= 2000
%
% Number of total outer iterations
OUTER_ITER = 100
%
% Courant-Friedrichs-Lewy condition
CFL_NUMBER= 100.0
%
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
MESH_FILENAME= mesh_cht_3cyl.su2
%
SCREEN_OUTPUT= ( TIME_ITER, OUTER_ITER, \
BGS_PRESSURE[0], BGS_TEMPERATURE[0], BGS_TEMPERATURE[1], BGS_TEMPERATURE[2], BGS_TEMPERATURE[3], \
DRAG[0], SURFACE_STATIC_TEMPERATURE[0], AVG_TEMPERATURE[1], TOTAL_HEATFLUX[1] )
SCREEN_WRT_FREQ_OUTER= 25
%
HISTORY_OUTPUT= (ITER, BGS_RES[0], BGS_RES[1], BGS_RES[2], BGS_RES[3], HEAT[0], AERO_COEFF[0])
%
OUTPUT_FILES=(RESTART, PARAVIEW_MULTIBLOCK)
%
RESTART_SOL= NO
READ_BINARY_RESTART= YES
SOLUTION_FILENAME= solution
RESTART_FILENAME= solution
%
VOLUME_FILENAME= flow

156 changes: 156 additions & 0 deletions multiphysics/unsteady_cht/flow_cylinder.cfg
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: Transient incomp laminar flow around heated cylinders %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
% POISSON_EQUATION)
SOLVER= INC_NAVIER_STOKES
%
% If Navier-Stokes, kind of turbulent model (NONE, SA)
KIND_TURB_MODEL= NONE
%
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Farfield boundary marker(s) (NONE = no marker)
MARKER_FAR= ( farfield )
%
% ---------------- INCOMPRESSIBLE FLOW CONDITION DEFINITION -------------------%
%
% Density model within the incompressible flow solver.
% Options are CONSTANT (default), BOUSSINESQ, or VARIABLE. If VARIABLE,
% an appropriate fluid model must be selected.
INC_DENSITY_MODEL= VARIABLE
%
% Solve the energy equation in the incompressible flow solver
INC_ENERGY_EQUATION = YES
%
% Initial density for incompressible flows (1.2886 kg/m^3 by default)
INC_DENSITY_INIT= 0.0210322
%
% Initial velocity for incompressible flows (1.0,0,0 m/s by default)
INC_VELOCITY_INIT= ( 3.40297, 0.0, 0.0 )
%
% Initial temperature for incompressible flows that include the
% energy equation (288.15 K by default). Value is ignored if
% INC_ENERGY_EQUATION is false.
INC_TEMPERATURE_INIT= 288.15
%
% Non-dimensionalization scheme for incompressible flows. Options are
% INITIAL_VALUES (default), REFERENCE_VALUES, or DIMENSIONAL.
% INC_*_REF values are ignored unless REFERENCE_VALUES is chosen.
INC_NONDIM= DIMENSIONAL
%
% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
%
% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS,
% CONSTANT_DENSITY, INC_IDEAL_GAS)
FLUID_MODEL= INC_IDEAL_GAS
%
% Specific heat at constant pressure, Cp (1004.703 J/kg*K (air)).
% Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS).
SPECIFIC_HEAT_CP= 1004.703
%
% Molecular weight for an incompressible ideal gas (28.96 g/mol (air) default)
% Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS).
MOLECULAR_WEIGHT= 28.96
%
% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
VISCOSITY_MODEL= CONSTANT_VISCOSITY
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 1.7893e-05
%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4

% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% Molecular Thermal Conductivity that would be constant (0.0257 by default)
KT_CONSTANT= 0.0257
%
% Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL)
PRANDTL_LAM= 0.72
%
% Turbulent Prandtl number (0.9 (air), only for CONSTANT_PRANDTL)
PRANDTL_TURB= 0.90
%
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations (BCGSTAB, FGMRES, SMOOTHER_JACOBI,
% SMOOTHER_ILU, SMOOTHER_LUSGS,
% SMOOTHER_LINELET)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= ILU
%
% Linael solver ILU preconditioner fill-in level (0 by default)
LINEAR_SOLVER_ILU_FILL_IN= 0
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-15
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 20
%
Comment on lines +115 to +117
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this was 5 iterations before, with this setup you get a vortex shedding, with 5 one doesn't

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= FDS
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_FLOW= YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= NONE
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -19
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-6
%
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
MARKER_PLOTTING= (cylinder_outer1, cylinder_outer2, cylinder_outer3)
%
MARKER_MONITORING= (cylinder_outer1, cylinder_outer2, cylinder_outer3)
%
MARKER_ANALYZE= (cylinder_outer1, cylinder_outer2, cylinder_outer3)

Loading