Skip to content

suanfaxiaohuo/SwinOCSR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SwinOCSR

Install

Please see INSTALL.md

Datasets

Image

The our datasets are available in SMILES format to generate images

Download form "dataset"

User cdk/src/main/java/GenerateBatchimage to generate the images
User Binary_images to generate binary images

Saving binary images to "Data/500wan/500wanBinarizationPNG/"

Label

download form https://www.kaggle.com/gogogogo11/datasetlabel

The directory Data should look like:

Data
├── 500wan
│   ├── 500wanBinarizationPNG
│   ├── 500wan_shuffle_DeepSMILES_test_category_0.pkl
│   ├── 500wan_shuffle_DeepSMILES_test_category_1.pkl
│   ├── 500wan_shuffle_DeepSMILES_test_category_2.pkl
│   ├── 500wan_shuffle_DeepSMILES_test_category_3.pkl
│   ├── 500wan_shuffle_DeepSMILES_test_length_0.pkl
│   ├── 500wan_shuffle_DeepSMILES_test_length_1.pkl
│   ├── 500wan_shuffle_DeepSMILES_test_length_2.pkl
│   ├── 500wan_shuffle_DeepSMILES_test_length_3.pkl
│   ├── 500wan_shuffle_DeepSMILES_test.pkl
│   ├── 500wan_shuffle_DeepSMILES_train.pkl
│   ├── 500wan_shuffle_DeepSMILES_val.pkl
│   ├── 500wan_shuffle_DeepSMILES_word_map

Trained models

Name Accuracy Tanimoto Model
Swin Transformer(ce loss) 0.9736 0.9965 https://www.kaggle.com/gogogogo11/moedel
ResNet-50 0.8917 0.9879 https://www.kaggle.com/gogogogo11/moedel
EfficientNet-B3 0.8670 0.9846 https://www.kaggle.com/gogogogo11/moedel
Swin Transformer(focal loss) 0.9858 0.9977 https://www.kaggle.com/gogogogo11/moedel

Train model

this is a example for Swin-transformer-celoss
cd model/Swin-transformer-celoss
CUDA_VISIBLE_DEVICES="0,1,2,3" python -m torch.distributed.launch --nproc_per_node 4 --master_port 29500 main.py   --resume <checkpoint-file> 


Eval model

this is a example for Swin-transformer-celoss
cd model/Swin-transformer-celoss
CUDA_VISIBLE_DEVICES="0" python -m torch.distributed.launch --nproc_per_node 1 --master_port 29500 main.py --eval  --resume <checkpoint-file> --test_dir <label-file>


How to run the Swin Transformer (focal loss) model on images

  • Copy swin_transform_focalloss.pth to model/Swin-transformer-focalloss/
  • cd model/Swin-transformer-focalloss/
  • Run python run_ocsr_on_images.py --data-path ./path/of/directory/with/images
  • The script runs the Swin Transformer model on all images in the given directory and saves the results in smiles_output.tsv in the same directory. Each line of the output file contains the image file name and the SMILES representation of the depicted molecule.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published