- Source Power Correlation analysis (SPoC, Dähne et al. 2014a)
- multimodal Source Power Correlation analysis (mSPoC, Dähne et al., 2013)
- canonical Source Power Correlation analysis (cSPoC, Dähne et al., 2014b)
- Spatio-Spectral Decomposition (SSD) for dimensionality reduction (Nikulin et al., 2011, Haufe et al. 2014b)
Download the latest release from here: https://github.com/svendaehne/matlab_SPoC/releases/latest
- Please make sure the util folder (and all of its subfolders) are on the Matlab path. Otherwise the optimization required for (m/c)SPoC will not work! Run the
startup_spoc.m
script to add folders to the path. - Please read the documentation of the matlab functions
ssd.m
,spoc.m
,mspoc.m
,cspoc.m
and run / look at the respective examples. I have tried to explain everything that you need to know to use the functions. If there is unclarity, please let me know and I will try to improve the documentation. - It is highly recommened to use dimensionality reduction via SSD before applying (m/c)SPoC. Dimensionality reduction greatly increases the computational speed and improves the quality of the results! Below you find a snippet of matlab code that shows an example of how to use SSD for preprocessing.
- EEGLAB plugins are on the way!
S. Dähne, F. C. Meinecke, S. Haufe, J. Höhne, M. Tangermann, K. R. Müller, V. V. Nikulin, "SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters", NeuroImage, 86:111-122, 2014
S. Dähne, F. Biessman, F. C. Meinecke, J. Mehnert, S. Fazli, K. R. Müller, "Integration of Multivariate Data Streams With Bandpower Signals", IEEE Transactions on Multimedia, 15(5):1001-1013, 2013
S. Dähne, V. V. Nikulin, D. Ramirez, P. J. Schreier, K. R. Müller, S. Haufe, "Finding brain oscillations with power dependencies in neuroimaging data", NeuroImage, 96:334-348, 2014
S. Haufe, F. Meinecke, K. Görgen, S. Dähne, J. Haynes, B. Blankertz, F. Biessmann, "On the interpretation of weight vectors of linear models in multivariate neuroimaging", NeuroImage, 87:96-110, 2014
S. Haufe, S. Dähne, V. V. Nikulin, "Dimensionality reduction for the analysis of brain oscillations", NeuroImage, 101:583-597, 2014
V. Nikulin, G. Nolte, G. Curio, "A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition" , NeuroImage, 55(4):1528-35, 2011 .