Mushroom: Reinforcement Learning Python library.
Contents of this document:
Mushroom is a Python Reinforcement Learning (RL) library whose modularity allows to easily use well-known Python libraries for tensor computation (e.g. PyTorch, Tensorflow) and RL benchmarks (e.g. OpenAI Gym, PyBullet, Deepmind Control Suite). It allows to perform RL experiments in a simple way providing classical RL algorithms (e.g. Q-Learning, SARSA, FQI), and deep RL algorithms (e.g. DQN, DDPG, SAC, TD3, TRPO, PPO).
Full documentation available at http://mushroomrl.readthedocs.io/en/latest/.
You can do a minimal installation of Mushroom
with:
git clone https://github.com/AIRLab-POLIMI/mushroom.git
cd mushroom
pip3 install -e .
To install the whole set of features, you will need additional packages installed. You can install everything by running:
pip3 install -e '.[all]'
This will install every dependency of mushroom, except MuJoCo dependencies.
To use the mujoco-py
mushroom interface you can run the command:
pip3 install -e '.[mujoco]'
You might need to install external dependencies first. For more information about mujoco-py installation follow the instructions on the project page
To use dm_control mushroom interface, install dm_control
following the instruction that can
be found here
To run experiments, Mushroom requires a script file that provides the necessary information for the experiment. Follow the scripts in the "examples" folder to have an idea of how an experiment can be run.
For instance, to run a quick experiment with one of the provided example scripts, run:
python3 examples/car_on_hill_fqi.py