Skip to content

Attention is All We Need: Nailing Down Object-centric Attention for Egocentric Activity Recognition - BMVC 2018

Notifications You must be signed in to change notification settings

swathikirans/ego-rnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Attention is All We Need: Nailing Down Object-centric Attention for Egocentric Activity Recognition

The git contains the source code associated with our BMVC 2018 paper: "Attention is All We Need: Nailing Down Object-centric Attention for Egocentric Activity Recognition" The paper is available in here.

Prerequisites

  • Python 3.5
  • Pytorch 0.3.1

Running

  • RGB
    • Stage 1
    • python main-run-rgb.py --dataset gtea_61 
      --stage 1 
      --trainDatasetDir ./dataset/gtea_61/split2/train 
      --outDir experiments 
      --seqLen 25 
      --trainBatchSize 32 
      --numEpochs 300 
      --lr 1e-3 
      --stepSize 25 75 150 
      --decayRate 0.1 
      --memSize 512
      
    • Stage 2
    • python main-run-rgb.py --dataset gtea61 
      --stage 2 
      --trainDatasetDir ./dataset/gtea_61/split2/train 
      --outDir experiments 
      --stage1Dict best_model_state_dict.pth 
      --seqLen 25 
      --trainBatchSize 32 
      --numEpochs 150 
      --lr 1e-4 
      --stepSize 25 75 
      --decayRate 0.1 
      --memSize 512
      
  • Flow
  • python main-run-flow.py --dataset gtea61 
    --trainDatasetDir ./dataset/gtea_61/split2/train 
    --outDir experiments 
    --stackSize 5 
    --trainBatchSize 32 
    --numEpochs 750 
    --lr 1e-2 
    --stepSize 150 300 500 
    --decayRate 0.5
    
  • Two Stream
  • python main-run-twoStream.py --dataset gtea61 
    --flowModel ./models/best_model_state_dict_flow_split2.pth 
    --rgbModel ./models/best_model_state_dict_rgb_split2.pth 
    --trainDatasetDir ./dataset/gtea_61/split2/train 
    --outDir experiments 
    --seqLen 25 
    --stackSize 5 
    --trainBatchSize 32 
    --numEpochs 250 
    --lr 1e-2 
    --stepSize 1 
    --decayRate 0.99 
    --memSize 512
    

Evaluating the models

  • RGB
  • python eval-run-rgb.py --dataset gtea61 
    --datasetDir ./dataset/gtea_61/split2/test 
    --modelStateDict best_model_state_rgb.pth 
    --seqLen 25 
    --memSize 512
    
  • Flow
  • python eval-run-rgb.py --dataset gtea61 
    --datasetDir ./dataset/gtea_61/split2/test 
    --modelStateDict best_model_state_flow.pth 
    --stackSize 5 
    --numSegs 5
    
  • Two Stream
  • python eval-run-twoStream-joint.py --dataset gtea61 
    --datasetDir ./dataset/gtea_61/split2/test 
    --modelStateDict best_model_state_twoStream.pth 
    --seqLen 25 
    --stackSize 5 
    --memSize 512
    

Pretrained models

The models trained on the fixed split (S2) of GTEA 61 can be downloaded from the following links

The dataset can be downloaded from the following link:

http://www.cbi.gatech.edu/fpv/

Once the videos are downloaded, extract the frames and optical flow using the following implementation:

https://github.com/yjxiong/dense_flow

Run 'prepareGTEA61Dataset.py' script to make the dataset.

Alternatively, the frames and the corresponding warp optical flow of the GTEA 61 dataset can be downloaded from the following link

About

Attention is All We Need: Nailing Down Object-centric Attention for Egocentric Activity Recognition - BMVC 2018

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages