Skip to content

Real-time face detection model using YOLOv3 with Keras

License

Notifications You must be signed in to change notification settings

swdev1202/keras-yolo3-facedetection

 
 

Repository files navigation

keras-yolo3-facedetection

license

Introduction

This is a real-time face detection model using YOLOv3 with Keras.

The YOLOv3 in Keras was done by qqweee.
Face dataset from WIDER Face


Quick Start

  1. Download YOLOv3-Face model from HERE
  2. Place wider_face_yolo.h5 into model_data/
  3. Run YOLO detection.
python yolo_video.py [OPTIONS...] --image, for image detection mode, OR
python yolo_video.py [video_path] [output_path (optional)]

Usage

Use --help to see usage of yolo_video.py:

usage: yolo_video.py [-h] [--model MODEL] [--anchors ANCHORS]
                     [--classes CLASSES] [--gpu_num GPU_NUM] [--image]
                     [--input] [--output]

positional arguments:
  --input        Video input path
  --output       Video output path

optional arguments:
  -h, --help         show this help message and exit
  --model MODEL      path to model weight file, default model_data/yolo.h5
  --anchors ANCHORS  path to anchor definitions, default
                     model_data/yolo_anchors.txt
  --classes CLASSES  path to class definitions, default
                     model_data/coco_classes.txt
  --gpu_num GPU_NUM  Number of GPU to use, default 1
  --image            Image detection mode, will ignore all positional arguments

Training

  1. Generate your own annotation file and class names file.
    One row for one image;
    Row format: image_file_path box1 box2 ... boxN;
    Box format: x_min,y_min,x_max,y_max,class_id (no space).
    For VOC dataset, try python voc_annotation.py
    Here is an example:

    path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3
    path/to/img2.jpg 120,300,250,600,2
    ...
    
  2. Make sure you have run python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5
    The file model_data/yolo_weights.h5 is used to load pretrained weights.

  3. Modify train.py and start training.
    python train.py
    Use your trained weights or checkpoint weights with command line option --model model_file when using yolo_video.py Remember to modify class path or anchor path, with --classes class_file and --anchors anchor_file.

If you want to use original pretrained weights for YOLOv3:
1. wget https://pjreddie.com/media/files/darknet53.conv.74
2. rename it as darknet53.weights
3. python convert.py -w darknet53.cfg darknet53.weights model_data/darknet53_weights.h5
4. use model_data/darknet53_weights.h5 in train.py


Result

Video Inference Result

About

Real-time face detection model using YOLOv3 with Keras

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.0%
  • Jupyter Notebook 11.0%