Skip to content
147 changes: 71 additions & 76 deletions stdlib/public/Concurrency/Clock.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -11,17 +11,18 @@
//===----------------------------------------------------------------------===//

#include "swift/Runtime/Concurrency.h"
#include "swift/Runtime/Once.h"

#if __has_include(<time.h>)
#define HAS_TIME 1
#include <time.h>
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <Windows.h>
#include <realtimeapiset.h>
#endif

#include "Error.h"

using namespace swift;

SWIFT_EXPORT_FROM(swift_Concurrency)
Expand All @@ -32,80 +33,83 @@ void swift_get_time(
swift_clock_id clock_id) {
switch (clock_id) {
case swift_clock_id_continuous: {
#if defined(__linux__) && HAS_TIME
struct timespec continuous;
#if defined(__linux__)
clock_gettime(CLOCK_BOOTTIME, &continuous);
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
#elif defined(__APPLE__) && HAS_TIME
struct timespec continuous;
#elif defined(__APPLE__)
clock_gettime(CLOCK_MONOTONIC_RAW, &continuous);
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
#elif (defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__wasi__)) && HAS_TIME
struct timespec continuous;
#elif (defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__wasi__))
clock_gettime(CLOCK_MONOTONIC, &continuous);
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
#elif defined(_WIN32)
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
LARGE_INTEGER count;
QueryPerformanceCounter(&count);
*seconds = count.QuadPart / freq.QuadPart;
if (freq.QuadPart < 1000000000) {
*nanoseconds =
((count.QuadPart % freq.QuadPart) * 1000000000) / freq.QuadPart;
} else {
*nanoseconds =
(count.QuadPart % freq.QuadPart) * (1000000000.0 / freq.QuadPart);
}
// Divide count (number of ticks) by frequency (number of ticks per
// second) to get the counter in seconds. We also need to multiply the
// count by 1,000,000,000 to get nanosecond resolution. By multiplying
// first, we maintain high precision. The resulting value is the tick
// count in nanoseconds. Use 128-bit math to avoid overflowing.
auto quadPart = static_cast<unsigned __int128>(count.QuadPart);
auto ns = (quadPart * 1'000'000'000) / freq.QuadPart;
continuous.tv_sec = ns / 1'000'000'000;
continuous.tv_nsec = ns % 1'000'000'000;
#else
#error Missing platform continuous time definition
#endif
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
return;
}
case swift_clock_id_suspending: {
#if defined(__linux__) && HAS_TIME
struct timespec suspending;
#if defined(__linux__)
clock_gettime(CLOCK_MONOTONIC, &suspending);
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
#elif defined(__APPLE__) && HAS_TIME
struct timespec suspending;
#elif defined(__APPLE__)
clock_gettime(CLOCK_UPTIME_RAW, &suspending);
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
#elif defined(__wasi__) && HAS_TIME
struct timespec suspending;
#elif defined(__wasi__)
clock_gettime(CLOCK_MONOTONIC, &suspending);
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
#elif (defined(__OpenBSD__) || defined(__FreeBSD__)) && HAS_TIME
struct timespec suspending;
#elif (defined(__OpenBSD__) || defined(__FreeBSD__))
clock_gettime(CLOCK_UPTIME, &suspending);
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
#elif defined(_WIN32)
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
LARGE_INTEGER count;
QueryPerformanceCounter(&count);
*seconds = count.QuadPart / freq.QuadPart;
if (freq.QuadPart < 1000000000) {
*nanoseconds =
((count.QuadPart % freq.QuadPart) * 1000000000) / freq.QuadPart;
// QueryUnbiasedInterruptTimePrecise() was added in Windows 10 and is, as
// the name suggests, more precise than QueryUnbiasedInterruptTime().
// Unfortunately, the symbol is not listed in any .lib file in the SDK and
// must be looked up dynamically at runtime even if our minimum deployment
// target is Windows 10.
typedef decltype(QueryUnbiasedInterruptTimePrecise) *QueryUITP_FP;
static QueryUITP_FP queryUITP = nullptr;
static swift::once_t onceToken;
swift::once(onceToken, [] {
if (HMODULE hKernelBase = GetModuleHandleW(L"KernelBase.dll")) {
queryUITP = reinterpret_cast<QueryUITP_FP>(
GetProcAddress(hKernelBase, "QueryUnbiasedInterruptTimePrecise")
);
}
});

// Call whichever API is available. Both output a value measured in 100ns
// units. We must divide the output by 10,000,000 to get a value in
// seconds and multiply the remainder by 100 to get nanoseconds.
ULONGLONG unbiasedTime;
if (queryUITP) {
(* queryUITP)(&unbiasedTime);
} else {
*nanoseconds =
(count.QuadPart % freq.QuadPart) * (1000000000.0 / freq.QuadPart);
// Fall back to the older, less precise API.
(void)QueryUnbiasedInterruptTime(&unbiasedTime);
}
suspending.tv_sec = unbiasedTime / 10'000'000;
suspending.tv_nsec = (unbiasedTime % 10'000'000) * 100;
#else
#error Missing platform suspending time definition
#endif
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
return;
}
}
abort(); // Invalid clock_id
swift_Concurrency_fatalError(0, "Fatal error: invalid clock ID %d\n",
clock_id);
}

SWIFT_EXPORT_FROM(swift_Concurrency)
Expand All @@ -116,55 +120,46 @@ void swift_get_clock_res(
swift_clock_id clock_id) {
switch (clock_id) {
case swift_clock_id_continuous: {
#if defined(__linux__) && HAS_TIME
struct timespec continuous;
#if defined(__linux__)
clock_getres(CLOCK_BOOTTIME, &continuous);
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
#elif defined(__APPLE__) && HAS_TIME
struct timespec continuous;
#elif defined(__APPLE__)
clock_getres(CLOCK_MONOTONIC_RAW, &continuous);
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
#elif (defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__wasi__)) && HAS_TIME
struct timespec continuous;
#elif (defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__wasi__))
clock_getres(CLOCK_MONOTONIC, &continuous);
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
#elif defined(_WIN32)
*seconds = 0;
*nanoseconds = 1000;
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
continuous.tv_sec = 0;
continuous.tv_nsec = 1'000'000'000 / freq.QuadPart;
#else
#error Missing platform continuous time definition
#endif
*seconds = continuous.tv_sec;
*nanoseconds = continuous.tv_nsec;
return;
}
case swift_clock_id_suspending: {
struct timespec suspending;
#if defined(__linux__) && HAS_TIME
#if defined(__linux__)
clock_getres(CLOCK_MONOTONIC_RAW, &suspending);
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
#elif defined(__APPLE__) && HAS_TIME
#elif defined(__APPLE__)
clock_getres(CLOCK_UPTIME_RAW, &suspending);
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
#elif defined(__wasi__) && HAS_TIME
#elif defined(__wasi__)
clock_getres(CLOCK_MONOTONIC, &suspending);
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
#elif (defined(__OpenBSD__) || defined(__FreeBSD__)) && HAS_TIME
#elif (defined(__OpenBSD__) || defined(__FreeBSD__))
clock_getres(CLOCK_UPTIME, &suspending);
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
#elif defined(_WIN32)
*seconds = 0;
*nanoseconds = 1000;
suspending.tv_sec = 0;
suspending.tv_nsec = 100;
#else
#error Missing platform suspending time definition
#endif
*seconds = suspending.tv_sec;
*nanoseconds = suspending.tv_nsec;
return;
}
}
abort(); // Invalid clock_id
swift_Concurrency_fatalError(0, "Fatal error: invalid clock ID %d\n",
clock_id);
}