Skip to content

Library for deep learning algorithms

License

Notifications You must be signed in to change notification settings

szokejokepu/argo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

argo

Argo is a library for deep learning algorithms based on tensorflow and sonnet.

Installation

Requirements (stable):

  • tensorflow-datasets 1.2.0
  • tensorflow-estimator 1.14.0
  • tensorflow-gpu 1.14.0
  • tensorflow-metadata 0.14.0
  • tensorflow-probability 0.7.0
  • sonnet 1.32
  • torchfile
  • seaborn
  • matplotlib
  • numpy

Or:

pip install -r requirements.txt

How to run the code:

To run the examples provided in the framework (or new ones) one can choose between three separate modes of running:

  1. single: Runs a single instance of the configuration file
    python argo/runTraining.py configFile.conf single
  2. pool: Runs a muliple experiments (if defined) from the configuration file
    python argo/runTraining.py configFile.conf pool

Submodules

VAE

python argo/runTraining.py examples/MNISTcontinuous.conf single

Helmholtz Machine

python argo/runTraining.py examples/ThreeByThree.conf single

Prediction

python argo/runTraining.py examples/GTSRB.conf single

How to run the code:

python3 argo/runTrainingVAE.py configFile.conf single/pool/stats

See ConfOptions.conf in examples/ for details regarding meaning of parameters and logging options.

License

MIT

Contributors

In alphabetical order.

Main contributors

  • Luigi Malagò
  • Csongor Varady
  • Riccardo Volpi

Active contributors

  • Alexandra Albu
  • Cristian Alecsa
  • Norbert Cristian Bereczki
  • Robert Colt
  • Delia Dumitru
  • Alina Enescu
  • Petru Hlihor
  • Hector Javier Hortua
  • Uddhipan Thakur

Former contributors

  • Ria Arora
  • Dimitri Marinelli
  • Titus Nicolae
  • Alexandra Peste
  • Marginean Radu
  • Septimia Sarbu

Acknowledgements

The library has been developed in the context of the DeepRiemann project, co-funded by the European Regional Development Fund and the Romanian Government through the Competitiveness Operational Programme 2014-2020, Action 1.1.4, project ID P_37_714, SMIS code 103321, contract no. 136/27.09.2016.

About

Library for deep learning algorithms

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published