Argo is a library for deep learning algorithms based on tensorflow and sonnet.
Requirements (stable):
- tensorflow-datasets 1.2.0
- tensorflow-estimator 1.14.0
- tensorflow-gpu 1.14.0
- tensorflow-metadata 0.14.0
- tensorflow-probability 0.7.0
- sonnet 1.32
- torchfile
- seaborn
- matplotlib
- numpy
Or:
pip install -r requirements.txt
To run the examples provided in the framework (or new ones) one can choose between three separate modes of running:
- single:
Runs a single instance of the configuration file
python argo/runTraining.py configFile.conf single
- pool:
Runs a muliple experiments (if defined) from the configuration file
python argo/runTraining.py configFile.conf pool
python argo/runTraining.py examples/MNISTcontinuous.conf single
python argo/runTraining.py examples/ThreeByThree.conf single
python argo/runTraining.py examples/GTSRB.conf single
How to run the code:
python3 argo/runTrainingVAE.py configFile.conf single/pool/stats
See ConfOptions.conf in examples/ for details regarding meaning of parameters and logging options.
In alphabetical order.
- Luigi Malagò
- Csongor Varady
- Riccardo Volpi
- Alexandra Albu
- Cristian Alecsa
- Norbert Cristian Bereczki
- Robert Colt
- Delia Dumitru
- Alina Enescu
- Petru Hlihor
- Hector Javier Hortua
- Uddhipan Thakur
- Ria Arora
- Dimitri Marinelli
- Titus Nicolae
- Alexandra Peste
- Marginean Radu
- Septimia Sarbu
The library has been developed in the context of the DeepRiemann project, co-funded by the European Regional Development Fund and the Romanian Government through the Competitiveness Operational Programme 2014-2020, Action 1.1.4, project ID P_37_714, SMIS code 103321, contract no. 136/27.09.2016.