Skip to content

taehoonlee/clustereval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

clustereval

Easy clustering evaluation in MATLAB.
Copyright (c) 2015 Taehoon Lee

Usage

Input arguments are two clustering results and metric name.
clustereval(a, b, 'metric name')

Example Code

X = rand(100, 2);
Z = linkage(X, 'average', 'euclidean');
a = cluster(Z, 'maxclust', 4);
b = kmeans(X, 4);
clustereval(a, b, 'ari') % adjusted Rand index

Implemented Metrics

  • ri: the Rand Index
    • Rand, "Objective Criteria for the Evaluation of Clustering Methods", JASA, 1971.
  • mi: the Mirkin index
  • hi: the Hubert index
  • ari: adjusted Rand index
    • Hubert and Arabie, "Comparing partitions", Journal of Classification, 1985.
  • fowlkes: the Fowlkes-Mallows index
    • Fowlkes and Mallows, "A Method for Comparing Two Hierarchical Clustering", JASA, 1983.
  • chi: Pearson's chi-square test
    • Chernoff and Lehmann, "The Use of Maximum Likelihood Estimates in \chi^2 Tests for Goodness of Fit", AMS, 1954.
  • cramer: Cramer's coefficient
  • tchouproff: Tchouproff's coefficient
  • moc: the Measure of Concordance
    • Pfitzner et al., "Characterization and evaluation of similaritymeasures for pairs of clusterings", KIS, 2009.
  • nmi: Normalized Mutual Index
    • Strehl and Ghosh, "Cluster ensembles - a knowledge reuse framework for combining multiple partitions", JMLR, 2002.

About

Easy clustering evaluation in MATLAB

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages