Skip to content

Commit

Permalink
Add colorstr() (ultralytics#1887)
Browse files Browse the repository at this point in the history
* Add colorful()

* update

* newline fix

* add git description

* --always

* update loss scaling

* update loss scaling 2

* rename to colorstr()
  • Loading branch information
glenn-jocher authored Jan 9, 2021
1 parent a3d6e4d commit d167fbd
Show file tree
Hide file tree
Showing 5 changed files with 60 additions and 22 deletions.
5 changes: 3 additions & 2 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,8 +216,9 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

# Model parameters
hyp['cls'] *= nc / 80. # scale hyp['cls'] to class count
hyp['obj'] *= imgsz ** 2 / 640. ** 2 * 3. / nl # scale hyp['obj'] to image size and output layers
hyp['box'] *= 3. / nl # scale to layers
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
Expand Down
27 changes: 15 additions & 12 deletions utils/autoanchor.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
from scipy.cluster.vq import kmeans
from tqdm import tqdm

from utils.general import colorstr


def check_anchor_order(m):
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
Expand All @@ -20,7 +22,8 @@ def check_anchor_order(m):

def check_anchors(dataset, model, thr=4.0, imgsz=640):
# Check anchor fit to data, recompute if necessary
print('\nAnalyzing anchors... ', end='')
prefix = colorstr('blue', 'bold', 'autoanchor') + ': '
print(f'\n{prefix}Analyzing anchors... ', end='')
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
Expand All @@ -35,7 +38,7 @@ def metric(k): # compute metric
return bpr, aat

bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='')
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
if bpr < 0.98: # threshold to recompute
print('. Attempting to improve anchors, please wait...')
na = m.anchor_grid.numel() // 2 # number of anchors
Expand All @@ -46,9 +49,9 @@ def metric(k): # compute metric
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
check_anchor_order(m)
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
else:
print('Original anchors better than new anchors. Proceeding with original anchors.')
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
print('') # newline


Expand All @@ -70,6 +73,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
from utils.autoanchor import *; _ = kmean_anchors()
"""
thr = 1. / thr
prefix = colorstr('blue', 'bold', 'autoanchor') + ': '

def metric(k, wh): # compute metrics
r = wh[:, None] / k[None]
Expand All @@ -85,9 +89,9 @@ def print_results(k):
k = k[np.argsort(k.prod(1))] # sort small to large
x, best = metric(k, wh0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
for i, x in enumerate(k):
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
return k
Expand All @@ -107,13 +111,12 @@ def print_results(k):
# Filter
i = (wh0 < 3.0).any(1).sum()
if i:
print('WARNING: Extremely small objects found. '
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0)))
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1

# Kmeans calculation
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
s = wh.std(0) # sigmas for whitening
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
k *= s
Expand All @@ -136,7 +139,7 @@ def print_results(k):
# Evolve
npr = np.random
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
for _ in pbar:
v = np.ones(sh)
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
Expand All @@ -145,7 +148,7 @@ def print_results(k):
fg = anchor_fitness(kg)
if fg > f:
f, k = fg, kg.copy()
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
if verbose:
print_results(k)

Expand Down
28 changes: 27 additions & 1 deletion utils/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def get_latest_run(search_dir='.'):

def check_git_status():
# Suggest 'git pull' if repo is out of date
if platform.system() in ['Linux', 'Darwin'] and not os.path.isfile('/.dockerenv'):
if Path('.git').exists() and platform.system() in ['Linux', 'Darwin'] and not Path('/.dockerenv').is_file():
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
if 'Your branch is behind' in s:
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')
Expand Down Expand Up @@ -115,6 +115,32 @@ def one_cycle(y1=0.0, y2=1.0, steps=100):
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1


def colorstr(*input):
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
*prefix, str = input # color arguments, string
colors = {'black': '\033[30m', # basic colors
'red': '\033[31m',
'green': '\033[32m',
'yellow': '\033[33m',
'blue': '\033[34m',
'magenta': '\033[35m',
'cyan': '\033[36m',
'white': '\033[37m',
'bright_black': '\033[90m', # bright colors
'bright_red': '\033[91m',
'bright_green': '\033[92m',
'bright_yellow': '\033[93m',
'bright_blue': '\033[94m',
'bright_magenta': '\033[95m',
'bright_cyan': '\033[96m',
'bright_white': '\033[97m',
'end': '\033[0m', # misc
'bold': '\033[1m',
'undelrine': '\033[4m'}

return ''.join(colors[x] for x in prefix) + str + colors['end']


def labels_to_class_weights(labels, nc=80):
# Get class weights (inverse frequency) from training labels
if labels[0] is None: # no labels loaded
Expand Down
6 changes: 2 additions & 4 deletions utils/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,6 @@ def compute_loss(p, targets, model): # predictions, targets, model

# Losses
nt = 0 # number of targets
no = len(p) # number of outputs
balance = [4.0, 1.0, 0.3, 0.1, 0.03] # P3-P7
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
Expand Down Expand Up @@ -138,10 +137,9 @@ def compute_loss(p, targets, model): # predictions, targets, model

lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss

s = 3 / no # output count scaling
lbox *= h['box'] * s
lbox *= h['box']
lobj *= h['obj']
lcls *= h['cls'] * s
lcls *= h['cls']
bs = tobj.shape[0] # batch size

loss = lbox + lobj + lcls
Expand Down
16 changes: 13 additions & 3 deletions utils/torch_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,11 @@
import logging
import math
import os
import subprocess
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
Expand Down Expand Up @@ -41,9 +43,17 @@ def init_torch_seeds(seed=0):
cudnn.benchmark, cudnn.deterministic = True, False


def git_describe():
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
if Path('.git').exists():
return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1]
else:
return ''


def select_device(device='', batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
s = f'Using torch {torch.__version__} ' # string
s = f'YOLOv5 {git_describe()} torch {torch.__version__} ' # string
cpu = device.lower() == 'cpu'
if cpu:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
Expand All @@ -61,9 +71,9 @@ def select_device(device='', batch_size=None):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
else:
s += 'CPU'
s += 'CPU\n'

logger.info(f'{s}\n') # skip a line
logger.info(s) # skip a line
return torch.device('cuda:0' if cuda else 'cpu')


Expand Down

0 comments on commit d167fbd

Please sign in to comment.