Skip to content

tancik/learnit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learned Initializations for Optimizing Coordinate-Based Neural Representations

Open Demo in Colab

Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1, Divi Schmidt1, Pratul P. Srinivasan2, Jonathan T. Barron2, Ren Ng1

1UC Berkeley, 2Google Research *denotes equal contribution

Abstract

Teaser Image

Coordinate-based neural representations have shown significant promise as an alternative to discrete, array-based representations for complex low dimensional signals. However, optimizing a coordinate-based network from randomly initialized weights for each new signal is inefficient. We propose applying standard meta-learning algorithms to learn the initial weight parameters for these fully-connected networks based on the underlying class of signals being represented (e.g., images of faces or 3D models of chairs). Despite requiring only a minor change in implementation, using these learned initial weights enables faster convergence during optimization and can serve as a strong prior over the signal class being modeled, resulting in better generalization when only partial observations of a given signal are available.

Code

We provide a demo IPython notebook as a simple reference for the core idea. Scripts for the different tasks are located in the Experiments directory.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published