A visualization tool for exploring SAE (Sparse Autoencoder) features using UMAP and ball mapper. Paper: Visual Exploration of Feature Relationships in Sparse Autoencoders with Curated Concepts — published at the Mechanistic Interpretability Workshop at NeurIPS 2025.
- Download the data from Google Drive
- Unzip the downloaded file.
- Move the extracted
datafolder into thebackenddirectory so that the path isbackend/data/.
backend/- Flask API serverfrontend/- React web interface
-
Navigate to the backend directory:
cd backend -
Create a virtual environment (recommended):
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install Python dependencies:
pip install -r requirements.txt
Tested environment:
Node.js version 18.20.8 (node -v)
npm version 10.8.2 (npm -v)
-
Navigate to the frontend directory:
cd frontend -
Install Node.js dependencies:
npm install
-
Start the backend:
cd backend python app.py -
Start the frontend:
cd frontend npm start
@inproceedings{yan2025visual,
title={Visual Exploration of Feature Relationships in Sparse Autoencoders with Curated Concepts},
author={Yan, Xinyuan and Liu, Shusen and Thopalli, Kowshik and Phillips, Bei Wang},
booktitle={Mechanistic Interpretability Workshop at NeurIPS 2025}
}
