Skip to content

tdavislab/SAEExploration

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SAE Semantic Explorer

A visualization tool for exploring SAE (Sparse Autoencoder) features using UMAP and ball mapper. Paper: Visual Exploration of Feature Relationships in Sparse Autoencoders with Curated Concepts — published at the Mechanistic Interpretability Workshop at NeurIPS 2025.

🎬 Demo Video

Demo Video

Data

  1. Download the data from Google Drive
  2. Unzip the downloaded file.
  3. Move the extracted data folder into the backend directory so that the path is backend/data/.

Structure

  • backend/ - Flask API server
  • frontend/ - React web interface

Installation

Backend Setup

  1. Navigate to the backend directory:

    cd backend
  2. Create a virtual environment (recommended):

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install Python dependencies:

    pip install -r requirements.txt

Frontend Setup

Tested environment:

Node.js version 18.20.8 (node -v)
npm version 10.8.2 (npm -v)
  1. Navigate to the frontend directory:

    cd frontend
  2. Install Node.js dependencies:

    npm install

Quick Start

  1. Start the backend:

    cd backend
    python app.py
  2. Start the frontend:

    cd frontend
    npm start

📚 Cite Our Work

@inproceedings{yan2025visual,
  title={Visual Exploration of Feature Relationships in Sparse Autoencoders with Curated Concepts},
  author={Yan, Xinyuan and Liu, Shusen and Thopalli, Kowshik and Phillips, Bei Wang},
  booktitle={Mechanistic Interpretability Workshop at NeurIPS 2025}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published