Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 67 additions & 15 deletions site/en/guide/ragged_tensor.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -674,14 +674,14 @@
"source": [
"### Keras\n",
"\n",
"[tf.keras](https://www.tensorflow.org/guide/keras) is TensorFlow's high-level API for building and training deep learning models. Ragged tensors may be passed as inputs to a Keras model by setting `ragged=True` on `tf.keras.Input` or `tf.keras.layers.InputLayer`. Ragged tensors may also be passed between Keras layers, and returned by Keras models. The following example shows a toy LSTM model that is trained using ragged tensors."
"[tf.keras](https://www.tensorflow.org/guide/keras) is TensorFlow's high-level API for building and training deep learning models. It doesn't have ragged support. But it does support masked tensors. So the easiest way to use a ragged tensor in a Keras model is to convert the ragged tensor to a dense tensor, using `.to_tensor()` and then using Keras's builtin masking:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pHls7hQVJlk5"
"id": "ucYf2sSzTvQo"
},
"outputs": [],
"source": [
Expand All @@ -691,26 +691,77 @@
" 'She turned me into a newt.',\n",
" 'A newt?',\n",
" 'Well, I got better.'])\n",
"is_question = tf.constant([True, False, True, False])\n",
"\n",
"is_question = tf.constant([True, False, True, False])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MGYKmizJTw8B"
},
"outputs": [],
"source": [
"# Preprocess the input strings.\n",
"hash_buckets = 1000\n",
"words = tf.strings.split(sentences, ' ')\n",
"hashed_words = tf.strings.to_hash_bucket_fast(words, hash_buckets)\n",
"\n",
"hashed_words.to_list()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7FTujwOlUT8J"
},
"outputs": [],
"source": [
"hashed_words.to_tensor()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vzWudaESUBOZ"
},
"outputs": [],
"source": [
"tf.keras.Input?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pHls7hQVJlk5"
},
"outputs": [],
"source": [
"# Build the Keras model.\n",
"keras_model = tf.keras.Sequential([\n",
" tf.keras.layers.Input(shape=[None], dtype=tf.int64, ragged=True),\n",
" tf.keras.layers.Embedding(hash_buckets, 16),\n",
" tf.keras.layers.LSTM(32, use_bias=False),\n",
" tf.keras.layers.Embedding(hash_buckets, 16, mask_zero=True),\n",
" tf.keras.layers.LSTM(32, return_sequences=True, use_bias=False),\n",
" tf.keras.layers.GlobalAveragePooling1D(),\n",
" tf.keras.layers.Dense(32),\n",
" tf.keras.layers.Activation(tf.nn.relu),\n",
" tf.keras.layers.Dense(1)\n",
"])\n",
"\n",
"keras_model.compile(loss='binary_crossentropy', optimizer='rmsprop')\n",
"keras_model.fit(hashed_words, is_question, epochs=5)\n",
"print(keras_model.predict(hashed_words))"
"keras_model.fit(hashed_words.to_tensor(), is_question, epochs=5)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1IAjjmdTU9OU"
},
"outputs": [],
"source": [
"print(keras_model.predict(hashed_words.to_tensor()))"
]
},
{
Expand Down Expand Up @@ -799,7 +850,7 @@
"source": [
"### Datasets\n",
"\n",
"[tf.data](https://www.tensorflow.org/guide/data) is an API that enables you to build complex input pipelines from simple, reusable pieces. Its core data structure is `tf.data.Dataset`, which represents a sequence of elements, in which each element consists of one or more components. "
"[tf.data](https://www.tensorflow.org/guide/data) is an API that enables you to build complex input pipelines from simple, reusable pieces. Its core data structure is `tf.data.Dataset`, which represents a sequence of elements, in which each element consists of one or more components."
]
},
{
Expand Down Expand Up @@ -1078,9 +1129,11 @@
"import tempfile\n",
"\n",
"keras_module_path = tempfile.mkdtemp()\n",
"tf.saved_model.save(keras_model, keras_module_path)\n",
"imported_model = tf.saved_model.load(keras_module_path)\n",
"imported_model(hashed_words)"
"keras_model.save(keras_module_path+\"/my_model.keras\")\n",
"\n",
"imported_model = tf.keras.models.load_model(keras_module_path+\"/my_model.keras\")\n",
"\n",
"imported_model(hashed_words.to_tensor())"
]
},
{
Expand Down Expand Up @@ -2125,7 +2178,6 @@
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "ragged_tensor.ipynb",
"toc_visible": true
},
Expand Down