Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Regenerated the ops javadoc #582

Merged
merged 1 commit into from
Nov 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,6 @@ public final class BitwiseOps {
* tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE
* </pre>
*
* @param <T> data type for {@code z} output
* @param x The x value
* @param y The y value
* @param <T> data type for {@code BitwiseAnd} output and operands
Expand Down Expand Up @@ -91,7 +90,6 @@ public <T extends TNumber> BitwiseAnd<T> bitwiseAnd(Operand<T> x, Operand<T> y)
* tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE
* </pre>
*
* @param <T> data type for {@code z} output
* @param x The x value
* @param y The y value
* @param <T> data type for {@code BitwiseOr} output and operands
Expand Down Expand Up @@ -121,7 +119,6 @@ public <T extends TNumber> BitwiseOr<T> bitwiseOr(Operand<T> x, Operand<T> y) {
* tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE
* </pre>
*
* @param <T> data type for {@code z} output
* @param x The x value
* @param y The y value
* @param <T> data type for {@code BitwiseXor} output and operands
Expand Down Expand Up @@ -172,7 +169,6 @@ public <T extends TNumber> BitwiseXor<T> bitwiseXor(Operand<T> x, Operand<T> y)
* tf.assert_equal(tf.cast(inverted, tf.float32), tf.cast(expected, tf.float32))
* </pre>
*
* @param <T> data type for {@code y} output
* @param x The x value
* @param <T> data type for {@code Invert} output and operands
* @return a new instance of Invert
Expand Down Expand Up @@ -212,7 +208,6 @@ public <T extends TNumber> Invert<T> invert(Operand<T> x) {
* # &lt;tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)&gt;
* </pre>
*
* @param <T> data type for {@code z} output
* @param x The x value
* @param y The y value
* @param <T> data type for {@code LeftShift} output and operands
Expand Down Expand Up @@ -255,7 +250,6 @@ public <T extends TNumber> LeftShift<T> leftShift(Operand<T> x, Operand<T> y) {
* # &lt;tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)&gt;
* </pre>
*
* @param <T> data type for {@code z} output
* @param x The x value
* @param y The y value
* @param <T> data type for {@code RightShift} output and operands
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ public final class CollectiveOps {
/**
* Mutually exchanges multiple tensors of identical type and shape.
*
* @param <T> data type for {@code data} output
* @param input The input value
* @param communicator The communicator value
* @param groupAssignment The groupAssignment value
Expand Down Expand Up @@ -79,7 +78,6 @@ public CollectiveAssignGroup collectiveAssignGroup(Operand<TInt32> groupAssignme
/**
* Receives a tensor value broadcast from another device.
*
* @param <U> data type for {@code data} output
* @param groupSize The groupSize value
* @param groupKey The groupKey value
* @param instanceKey The instanceKey value
Expand All @@ -98,7 +96,6 @@ public <U extends TType> CollectiveBcastRecv<U> collectiveBcastRecv(Operand<TInt
/**
* Broadcasts a tensor value to one or more other devices.
*
* @param <T> data type for {@code data} output
* @param input The input value
* @param groupSize The groupSize value
* @param groupKey The groupKey value
Expand All @@ -119,7 +116,6 @@ public <T extends TType> CollectiveBcastSend<T> collectiveBcastSend(Operand<T> i
* collective ops. In this case, keys that are unique at runtime
* (e.g. {@code instance_key}) should be used to distinguish collective groups.
*
* @param <T> data type for {@code data} output
* @param input The input value
* @param groupSize The groupSize value
* @param groupKey The groupKey value
Expand Down Expand Up @@ -157,7 +153,6 @@ public CollectiveInitializeCommunicator collectiveInitializeCommunicator(Operand
* source_target_pairs={@code [[0,1],[1,2],[2,3],[3,0]]} gets the outputs:
* {@code [D, A, B, C]}.
*
* @param <T> data type for {@code output} output
* @param input The local input to be permuted. Currently only supports float and
* bfloat16.
* @param sourceTargetPairs A tensor with shape [num_pairs, 2].
Expand All @@ -172,7 +167,6 @@ public <T extends TType> CollectivePermute<T> collectivePermute(Operand<T> input
/**
* Mutually reduces multiple tensors of identical type and shape.
*
* @param <T> data type for {@code data} output
* @param input The input value
* @param communicator The communicator value
* @param groupAssignment The groupAssignment value
Expand All @@ -193,7 +187,6 @@ public <T extends TNumber> CollectiveReduce<T> collectiveReduce(Operand<T> input
* collective ops. In this case, keys that are unique at runtime
* (e.g. {@code instance_key}) should be used to distinguish collective groups.
*
* @param <T> data type for {@code data} output
* @param input The input value
* @param groupSize The groupSize value
* @param groupKey The groupKey value
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -987,7 +987,6 @@ public LatencyStatsDataset latencyStatsDataset(Operand<? extends TType> inputDat
/**
* Computes rectified linear gradients for a LeakyRelu operation.
*
* @param <T> data type for {@code backprops} output
* @param gradients The backpropagated gradients to the corresponding LeakyRelu operation.
* @param features The features passed as input to the corresponding LeakyRelu operation,
* OR the outputs of that operation (both work equivalently).
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,6 @@ public final class DebuggingOps {
* tensor. Unlike CheckNumerics (V1), CheckNumericsV2 distinguishes -Inf and +Inf
* in the errors it throws.
*
* @param <T> data type for {@code output} output
* @param tensor The tensor value
* @param message Prefix of the error message.
* @param <T> data type for {@code CheckNumericsV2} output and operands
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,6 @@ public final class DistributeOps {
* num_devices: The number of devices participating in this reduction.
* shared_name: Identifier that shared between ops of the same reduction.
*
* @param <T> data type for {@code data} output
* @param input The input value
* @param reduction The value of the reduction attribute
* @param numDevices The value of the numDevices attribute
Expand All @@ -74,7 +73,6 @@ public <T extends TNumber> NcclAllReduce<T> ncclAllReduce(Operand<T> input, Stri
* output: The same as input.
* shape: The shape of the input tensor.
*
* @param <T> data type for {@code output} output
* @param input The input value
* @param shape The value of the shape attribute
* @param <T> data type for {@code NcclBroadcast} output and operands
Expand All @@ -93,7 +91,6 @@ public <T extends TNumber> NcclBroadcast<T> ncclBroadcast(Operand<T> input, Shap
* data: the value of the reduction across all {@code num_devices} devices.
* reduction: the reduction operation to perform.
*
* @param <T> data type for {@code data} output
* @param input The input value
* @param reduction The value of the reduction attribute
* @param <T> data type for {@code NcclReduce} output and operands
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,6 @@ public AsString asString(Operand<? extends TType> input, AsString.Options... opt
/**
* Cast x of type SrcT to y of DstT.
*
* @param <U> data type for {@code y} output
* @param x The x value
* @param DstT The value of the DstT attribute
* @param options carries optional attribute values
Expand All @@ -95,7 +94,6 @@ public <U extends TType> Cast<U> cast(Operand<? extends TType> x, Class<U> DstT,
* tf.complex(real, imag) ==&gt; [[2.25 + 4.75j], [3.25 + 5.75j]]
* </pre>
*
* @param <U> data type for {@code out} output
* @param real The real value
* @param imag The imag value
* @param Tout The value of the Tout attribute
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,6 @@ public final class ImageOps {
* channel and then adjusts each component of each pixel to
* {@code (x - mean) * contrast_factor + mean}.
*
* @param <T> data type for {@code output} output
* @param images Images to adjust. At least 3-D.
* @param contrastFactor A float multiplier for adjusting contrast.
* @param <T> data type for {@code AdjustContrastv2} output and operands
Expand All @@ -112,7 +111,6 @@ public <T extends TNumber> AdjustContrast<T> adjustContrast(Operand<T> images,
* colors are first mapped into HSV. A delta is then applied all the hue values,
* and then remapped back to RGB colorspace.
*
* @param <T> data type for {@code output} output
* @param images Images to adjust. At least 3-D.
* @param delta A float delta to add to the hue.
* @param <T> data type for {@code AdjustHue} output and operands
Expand All @@ -130,7 +128,6 @@ public <T extends TNumber> AdjustHue<T> adjustHue(Operand<T> images, Operand<TFl
* colors are first mapped into HSV. A scale is then applied all the saturation
* values, and then remapped back to RGB colorspace.
*
* @param <T> data type for {@code output} output
* @param images Images to adjust. At least 3-D.
* @param scale A float scale to add to the saturation.
* @param <T> data type for {@code AdjustSaturation} output and operands
Expand Down Expand Up @@ -250,7 +247,6 @@ public CropAndResizeGradBoxes cropAndResizeGradBoxes(Operand<TFloat32> grads,
/**
* Computes the gradient of the crop_and_resize op wrt the input image tensor.
*
* @param <T> data type for {@code output} output
* @param grads A 4-D tensor of shape {@code [num_boxes, crop_height, crop_width, depth]}.
* @param boxes A 2-D tensor of shape {@code [num_boxes, 4]}. The {@code i}-th row of the tensor
* specifies the coordinates of a box in the {@code box_ind[i]} image and is specified
Expand Down Expand Up @@ -357,7 +353,6 @@ public DecodeGif decodeGif(Operand<TString> contents) {
* first frame that does not occupy the entire canvas, it uses the previous
* frame to fill the unoccupied areas.
*
* @param <T> data type for {@code image} output
* @param contents 0-D. The encoded image bytes.
* @param options carries optional attribute values
* @return a new instance of DecodeImage, with default output types
Expand All @@ -384,7 +379,6 @@ public DecodeImage<TUint8> decodeImage(Operand<TString> contents, DecodeImage.Op
* first frame that does not occupy the entire canvas, it uses the previous
* frame to fill the unoccupied areas.
*
* @param <T> data type for {@code image} output
* @param contents 0-D. The encoded image bytes.
* @param dtype The desired DType of the returned Tensor.
* @param options carries optional attribute values
Expand Down Expand Up @@ -438,7 +432,6 @@ public DecodeJpeg decodeJpeg(Operand<TString> contents, DecodeJpeg.Options... op
* <p>This op also supports decoding JPEGs and non-animated GIFs since the interface
* is the same, though it is cleaner to use {@code tf.io.decode_image}.
*
* @param <T> data type for {@code image} output
* @param contents 0-D. The PNG-encoded image.
* @param options carries optional attribute values
* @return a new instance of DecodePng, with default output types
Expand All @@ -463,7 +456,6 @@ public DecodePng<TUint8> decodePng(Operand<TString> contents, DecodePng.Options[
* <p>This op also supports decoding JPEGs and non-animated GIFs since the interface
* is the same, though it is cleaner to use {@code tf.io.decode_image}.
*
* @param <T> data type for {@code image} output
* @param contents 0-D. The PNG-encoded image.
* @param dtype The value of the dtype attribute
* @param options carries optional attribute values
Expand All @@ -487,7 +479,6 @@ public <T extends TNumber> DecodePng<T> decodePng(Operand<TString> contents, Cla
* the bounding box will be {@code (40, 10)} to {@code (100, 50)} (in (x,y) coordinates).
* <p>Parts of the bounding box may fall outside the image.
*
* @param <T> data type for {@code output} output
* @param images 4-D with shape {@code [batch, height, width, depth]}. A batch of images.
* @param boxes 3-D with shape {@code [batch, num_bounding_boxes, 4]} containing bounding
* boxes.
Expand Down Expand Up @@ -602,7 +593,6 @@ public ExtractGlimpse extractGlimpse(Operand<TFloat32> input, Operand<TInt32> si
/**
* Extract {@code patches} from {@code images} and put them in the &quot;depth&quot; output dimension.
*
* @param <T> data type for {@code patches} output
* @param images 4-D Tensor with shape {@code [batch, in_rows, in_cols, depth]}.
* @param ksizes The size of the sliding window for each dimension of {@code images}.
* @param strides How far the centers of two consecutive patches are in
Expand All @@ -626,7 +616,6 @@ public <T extends TType> ExtractImagePatches<T> extractImagePatches(Operand<T> i
* Extract the shape information of a JPEG-encoded image.
* This op only parses the image header, so it is much faster than DecodeJpeg.
*
* @param <T> data type for {@code image_shape} output
* @param contents 0-D. The JPEG-encoded image.
* @return a new instance of ExtractJpegShape, with default output types
*/
Expand All @@ -638,7 +627,6 @@ public ExtractJpegShape<TInt32> extractJpegShape(Operand<TString> contents) {
* Extract the shape information of a JPEG-encoded image.
* This op only parses the image header, so it is much faster than DecodeJpeg.
*
* @param <T> data type for {@code image_shape} output
* @param contents 0-D. The JPEG-encoded image.
* @param outputType (Optional) The output type of the operation (int32 or int64).
* Defaults to int32.
Expand Down Expand Up @@ -691,7 +679,6 @@ public GenerateBoundingBoxProposals generateBoundingBoxProposals(Operand<TFloat3
* are in {@code [0,1]}.
* <p>See {@code rgb_to_hsv} for a description of the HSV encoding.
*
* @param <T> data type for {@code output} output
* @param images 1-D or higher rank. HSV data to convert. Last dimension must be size 3.
* @param <T> data type for {@code HSVToRGB} output and operands
* @return a new instance of HsvToRgb
Expand All @@ -708,7 +695,6 @@ public <T extends TNumber> HsvToRgb<T> hsvToRgb(Operand<T> images) {
* {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input
* image, the output pixel is set to 0.
*
* @param <T> data type for {@code transformed_images} output
* @param images 4-D with shape {@code [batch, height, width, channels]}.
* @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3
* projective transformation matrix, with the last entry assumed to be 1. If there
Expand All @@ -733,7 +719,6 @@ public <T extends TNumber> ImageProjectiveTransformV2<T> imageProjectiveTransfor
* {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input
* image, the output pixel is set to fill_value.
*
* @param <T> data type for {@code transformed_images} output
* @param images 4-D with shape {@code [batch, height, width, channels]}.
* @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3
* projective transformation matrix, with the last entry assumed to be 1. If there
Expand Down Expand Up @@ -794,7 +779,6 @@ public NearestNeighbors nearestNeighbors(Operand<TFloat32> points, Operand<TFloa
* To enable this Soft-NMS mode, set the {@code soft_nms_sigma} parameter to be
* larger than 0.
*
* @param <T> data type for {@code selected_scores} output
* @param boxes A 2-D float tensor of shape {@code [num_boxes, 4]}.
* @param scores A 1-D float tensor of shape {@code [num_boxes]} representing a single
* score corresponding to each box (each row of boxes).
Expand Down Expand Up @@ -854,7 +838,6 @@ public NonMaxSuppressionWithOverlaps nonMaxSuppressionWithOverlaps(Operand<TFloa
* Resize quantized {@code images} to {@code size} using quantized bilinear interpolation.
* Input images and output images must be quantized types.
*
* @param <T> data type for {@code resized_images} output
* @param images 4-D with shape {@code [batch, height, width, channels]}.
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The
* new size for the images.
Expand All @@ -878,7 +861,6 @@ public <T extends TNumber> QuantizedResizeBilinear<T> quantizedResizeBilinear(Op
* rectangle from that location. The random location is picked so the cropped
* area will fit inside the original image.
*
* @param <T> data type for {@code output} output
* @param image 3-D of shape {@code [height, width, channels]}.
* @param sizeOutput 1-D of length 2 containing: {@code crop_height}, {@code crop_width}..
* @param options carries optional attribute values
Expand Down Expand Up @@ -931,7 +913,6 @@ public ResizeBicubic resizeBicubic(Operand<? extends TNumber> images, Operand<TI
/**
* Computes the gradient of bicubic interpolation.
*
* @param <T> data type for {@code output} output
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
* @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]},
* The image tensor that was resized.
Expand Down Expand Up @@ -962,7 +943,6 @@ public ResizeBilinear resizeBilinear(Operand<? extends TNumber> images,
/**
* Computes the gradient of bilinear interpolation.
*
* @param <T> data type for {@code output} output
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
* @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]},
* The image tensor that was resized.
Expand All @@ -978,7 +958,6 @@ public <T extends TNumber> ResizeBilinearGrad<T> resizeBilinearGrad(Operand<TFlo
/**
* Resize {@code images} to {@code size} using nearest neighbor interpolation.
*
* @param <T> data type for {@code resized_images} output
* @param images 4-D with shape {@code [batch, height, width, channels]}.
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The
* new size for the images.
Expand All @@ -994,7 +973,6 @@ public <T extends TNumber> ResizeNearestNeighbor<T> resizeNearestNeighbor(Operan
/**
* Computes the gradient of nearest neighbor interpolation.
*
* @param <T> data type for {@code output} output
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code orig_height, orig_width}. The
* original input size.
Expand Down Expand Up @@ -1031,7 +1009,6 @@ public <T extends TNumber> ResizeNearestNeighborGrad<T> resizeNearestNeighborGra
* </blockquote>
* </blockquote>
*
* @param <T> data type for {@code output} output
* @param images 1-D or higher rank. RGB data to convert. Last dimension must be size 3.
* @param <T> data type for {@code RGBToHSV} output and operands
* @return a new instance of RgbToHsv
Expand Down Expand Up @@ -1076,7 +1053,6 @@ public <T extends TNumber> RgbToHsv<T> rgbToHsv(Operand<T> images) {
* bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is
* false and no bounding boxes are supplied, an error is raised.
*
* @param <T> data type for {@code begin} output
* @param imageSize 1-D, containing {@code [height, width, channels]}.
* @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes
* associated with the image.
Expand Down Expand Up @@ -1113,7 +1089,6 @@ public ScaleAndTranslate scaleAndTranslate(Operand<? extends TNumber> images,
/**
* The ScaleAndTranslateGrad operation
*
* @param <T> data type for {@code output} output
* @param grads The grads value
* @param originalImage The originalImage value
* @param scale The scale value
Expand Down Expand Up @@ -1189,7 +1164,6 @@ public <T extends TNumber> ScaleAndTranslateGrad<T> scaleAndTranslateGrad(Operan
* bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is
* false and no bounding boxes are supplied, an error is raised.
*
* @param <T> data type for {@code begin} output
* @param imageSize 1-D, containing {@code [height, width, channels]}.
* @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes
* associated with the image.
Expand Down
Loading
Loading