Skip to content

Tensorboard options reuse_port and path_prefix not workiing together #5368

@lfvillavicencio

Description

@lfvillavicencio

Environment information (required)

Please run diagnose_tensorboard.py (link below) in the same
environment from which you normally run TensorFlow/TensorBoard, and
paste the output here:

Diagnostics:

### Diagnostics

<details>
<summary>Diagnostics output</summary>


--- check: autoidentify
INFO: diagnose_tensorboard.py version e43767ef2b648d0d5d57c00f38ccbd38390e38da

--- check: general
INFO: sys.version_info: sys.version_info(major=3, minor=7, micro=10, releaselevel='final', serial=0)
INFO: os.name: posix
INFO: os.uname(): posix.uname_result(sysname='Linux', nodename='ip-192-168-0-140.us-east-2.compute.internal', release='5.4.129-63.229.amzn2.x86_64', version='#1 SMP Tue Jul 20 21:22:08 UTC 2021', machine='x86_64')
INFO: sys.getwindowsversion(): N/A

--- check: package_management
INFO: has conda-meta: False
INFO: $VIRTUAL_ENV: None

--- check: installed_packages
INFO: installed: tensorboard==2.6.0
INFO: installed: tensorflow==2.1.0
INFO: installed: tensorflow-estimator==2.1.0
INFO: installed: tensorboard-data-server==0.6.1

--- check: tensorboard_python_version
INFO: tensorboard.version.VERSION: '2.6.0'

--- check: tensorflow_python_version
2021-10-09 00:00:37.825076: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory
2021-10-09 00:00:37.825186: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory
2021-10-09 00:00:37.825199: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
INFO: tensorflow.__version__: '2.1.0'
INFO: tensorflow.__git_version__: 'v2.1.0-rc2-17-ge5bf8de'

--- check: tensorboard_data_server_version
INFO: data server binary: '/home/ec2-user/.local/lib/python3.7/site-packages/tensorboard_data_server/bin/server'
INFO: data server binary version: b'rustboard 0.6.1'

--- check: tensorboard_binary_path
INFO: which tensorboard: b'/home/ec2-user/.local/bin/tensorboard\n'

--- check: addrinfos
socket.has_ipv6 = True
socket.AF_UNSPEC = <AddressFamily.AF_UNSPEC: 0>
socket.SOCK_STREAM = <SocketKind.SOCK_STREAM: 1>
socket.AI_ADDRCONFIG = <AddressInfo.AI_ADDRCONFIG: 32>
socket.AI_PASSIVE = <AddressInfo.AI_PASSIVE: 1>
Loopback flags: <AddressInfo.AI_ADDRCONFIG: 32>
Loopback infos: [(<AddressFamily.AF_INET6: 10>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('::1', 0, 0, 0)), (<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('127.0.0.1', 0))]
Wildcard flags: <AddressInfo.AI_PASSIVE: 1>
Wildcard infos: [(<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('0.0.0.0', 0)), (<AddressFamily.AF_INET6: 10>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('::', 0, 0, 0))]

--- check: readable_fqdn
INFO: socket.getfqdn(): 'ip-192-168-0-140.us-east-2.compute.internal'

--- check: stat_tensorboardinfo
INFO: directory: /tmp/.tensorboard-info
INFO: os.stat(...): os.stat_result(st_mode=16895, st_ino=13792819, st_dev=66305, st_nlink=2, st_uid=1000, st_gid=1000, st_size=48, st_atime=1633734297, st_mtime=1633737565, st_ctime=1633737565)
INFO: mode: 0o40777

--- check: source_trees_without_genfiles
INFO: tensorboard_roots (1): ['/home/ec2-user/.local/lib/python3.7/site-packages']; bad_roots (0): []

--- check: full_pip_freeze
INFO: pip freeze --all:
absl-py==0.14.1
astor==0.8.1
aws-cfn-bootstrap==2.0
cached-property==1.5.2
cachetools==4.2.4
certifi==2021.10.8
charset-normalizer==2.0.6
docutils==0.14
gast==0.2.2
google-auth==1.35.0
google-auth-oauthlib==0.4.6
google-pasta==0.2.0
grpcio==1.41.0
h5py==3.4.0
idna==3.2
importlib-metadata==4.8.1
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.2
lockfile==0.11.0
Markdown==3.3.4
numpy==1.21.2
oauthlib==3.1.1
opt-einsum==3.3.0
pip @ file:///builddir/build/BUILD/pip-20.2.2/dist/pip-20.2.2-py2.py3-none-any.whl
protobuf==3.18.1
pyasn1==0.4.8
pyasn1-modules==0.2.8
pystache==0.5.4
python-daemon==2.2.3
requests==2.26.0
requests-oauthlib==1.3.0
rsa==4.7.2
scipy==1.4.1
setuptools @ file:///builddir/build/BUILD/setuptools-49.1.3/dist/setuptools-49.1.3-py3-none-any.whl
simplejson==3.2.0
six==1.16.0
tensorboard==2.6.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.0
tensorflow==2.1.0
tensorflow-estimator==2.1.0
termcolor==1.1.0
typing-extensions==3.10.0.2
urllib3==1.26.7
Werkzeug==2.0.2
wheel==0.37.0
wrapt==1.13.1
zipp==3.6.0


### Next steps

For browser-related issues, please additionally specify:

  • Browser type and version (e.g., Chrome 64.0.3282.140): Version 1.30.87 Chromium: 94.0.4606.71 (Official Build) (64-bit)
  • Image:
    image

Issue description

When I try to run multiple tensorboard visualizations on the same port using the command reuse_port and path_prefix, sometimes only 1 visualization gets active on the browser or sometimes none of them.

Steps:

  1. download any 3 tensorboard logs and place them on the correct directory. suppose they are modelA, modelB, and modelC
  2. Run the following commands in order to show then on the same port and different context:
tensorboard --logdir=/path/to/modelA --port 8090 --bind_all --reuse_port true --path_prefix='/tensorboard/modelA'
tensorboard --logdir=/path/to/modelB --port 8090 --bind_all --reuse_port true --path_prefix='/tensorboard/modelB'
tensorboard --logdir=/path/to/modelC --port 8090 --bind_all --reuse_port true --path_prefix='/tensorboard/modelC'

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions