-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add spec for GPT2CausalLM and dependencies (#7897)
Adds the specs for GPT2CausalLM, GPT2CausalLMPreprocessor, GenerativeTask, Task, and PipelineModel.
- Loading branch information
1 parent
d500a0d
commit a0115ea
Showing
10 changed files
with
730 additions
and
31 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
/** | ||
* @license | ||
* Copyright 2023 Google LLC. | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* ============================================================================= | ||
*/ | ||
|
||
/** | ||
* Base class for Generative Task models. | ||
*/ | ||
|
||
/* Original source: keras_nlp/models/generative_task.py */ | ||
import { NamedTensorMap, Tensor } from '@tensorflow/tfjs-core'; | ||
|
||
import { NotImplementedError } from '../../../errors'; | ||
import { ModelCompileArgs } from '../../../engine/training'; | ||
|
||
import { Task } from './task'; | ||
|
||
export type GenerateFn = | ||
(inputs: NamedTensorMap, endTokenId?: number) => NamedTensorMap; | ||
|
||
/** | ||
* Base class for Generative Task models. | ||
*/ | ||
export class GenerativeTask extends Task { | ||
/** @nocollapse */ | ||
static override className = 'GenerativeTask'; | ||
|
||
protected generateFunction: GenerateFn; | ||
|
||
override compile(args: ModelCompileArgs): void { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
/** | ||
* Run the generation on a single batch of input. | ||
*/ | ||
generateStep( | ||
inputs: NamedTensorMap, | ||
endTokenId: number | ||
): NamedTensorMap { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
/** | ||
* Create or return the compiled generation function. | ||
*/ | ||
makeGenerateFunction(): GenerateFn { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
/** | ||
* Normalize user input to the generate function. | ||
* | ||
* This function converts all inputs to tensors, adds a batch dimension if | ||
* necessary, and returns a iterable "dataset like" object. | ||
*/ | ||
protected normalizeGenerateInputs(inputs: Tensor): [Tensor, boolean] { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
/** | ||
* Normalize user output from the generate function. | ||
* | ||
* This function converts all output to numpy (for integer output), or | ||
* python strings (for string output). If a batch dimension was added to | ||
* the input, it is removed from the output (so generate can be string in, | ||
* string out). | ||
*/ | ||
protected normalizeGenerateOutputs( | ||
outputs: Tensor, | ||
inputIsScalar: boolean | ||
): Tensor { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
/** | ||
* Generate text given prompt `inputs`. | ||
* | ||
* This method generates text based on given `inputs`. The sampling method | ||
* used for generation can be set via the `compile()` method. | ||
* | ||
* `inputs` will be handled as a single batch. | ||
* | ||
* If a `preprocessor` is attached to the model, `inputs` will be | ||
* preprocessed inside the `generate()` function and should match the | ||
* structure expected by the `preprocessor` layer (usually raw strings). | ||
* If a `preprocessor` is not attached, inputs should match the structure | ||
* expected by the `backbone`. See the example usage above for a | ||
* demonstration of each. | ||
* | ||
* @param inputs tensor data. If a `preprocessor` is attached to the model, | ||
* `inputs` should match the structure expected by the `preprocessor` layer. | ||
* If a `preprocessor` is not attached, `inputs` should match the structure | ||
* expected the the `backbone` model. | ||
* @param maxLength Integer. The max length of the generated sequence. | ||
* Will default to the max configured `sequenceLength` of the | ||
* `preprocessor`. If `preprocessor` is `null`, `inputs` should be | ||
* should be padded to the desired maximum length and this argument | ||
* will be ignored. | ||
*/ | ||
generate(inputs: Tensor, maxLength?: number) { | ||
throw new NotImplementedError(); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
224 changes: 224 additions & 0 deletions
224
tfjs-layers/src/layers/nlp/models/gpt2/gpt2_causal_lm.ts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
/** | ||
* @license | ||
* Copyright 2023 Google LLC. | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* ============================================================================= | ||
*/ | ||
|
||
/** | ||
* GPT2 Causal LM (Language Model). | ||
*/ | ||
|
||
/* Original source: keras-nlp/models/gpt2/gpt2_causal_lm.py */ | ||
import { NamedTensorMap, Tensor, serialization } from '@tensorflow/tfjs-core'; | ||
|
||
import { GPT2Preprocessor } from './gpt2_preprocessor'; | ||
import { NotImplementedError } from '../../../../errors'; | ||
import { Layer } from '../../../../exports_layers'; | ||
import { LayerArgs } from '../../../../engine/topology'; | ||
import { Embedding } from '../../../../layers/embeddings'; | ||
import { Shape } from '../../../../keras_format/common'; | ||
import { GenerativeTask } from '../generative_task'; | ||
import { GPT2Backbone } from './gpt2_backbone'; | ||
import { PipelineModelArgs } from '../../utils'; | ||
import { Kwargs } from '../../../../types'; | ||
|
||
declare interface ReverseEmbeddingArgs extends LayerArgs { | ||
embedding: Embedding; | ||
} | ||
|
||
class ReverseEmbedding extends Layer { | ||
protected embedding: Embedding; | ||
|
||
constructor(args: ReverseEmbeddingArgs) { | ||
super(args); | ||
this.embedding = args.embedding; | ||
} | ||
|
||
override call(inputs: Tensor|Tensor[], kwargs: Kwargs): Tensor|Tensor[] { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
override computeOutputShape(inputShape: Shape|Shape[]): Shape|Shape[] { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
} | ||
|
||
export declare interface GPT2CausalLMArgs extends PipelineModelArgs { | ||
/** | ||
* A `GPT2Backbone` instance. | ||
*/ | ||
backbone: GPT2Backbone; | ||
|
||
/** | ||
* Optional `GPT2CausalLMPreprocessor`. | ||
* If `null`, this model will not apply preprocessing, and inputs should be | ||
* preprocessed before calling the model. | ||
*/ | ||
preprocessor?: GPT2Preprocessor; | ||
} | ||
|
||
/** | ||
* An end-to-end GPT2 model for causal langauge modeling. | ||
* | ||
* A causal language model (LM) predicts the next token based on previous | ||
* tokens. This task setup can be used to train the model unsupervised on | ||
* plain text input, or to autoregressively generate plain text similar to | ||
* the data used for training. This task can be used for pre-training or | ||
* fine-tuning a GPT-2 model, simply by calling `fit()`. | ||
* | ||
* This model has a `generate()` method, which generates text based on a | ||
* prompt. The generation strategy used is controlled by an additional | ||
* sampler` argument on `compile()`. | ||
* By default, the top k results will be returned. | ||
* | ||
* This model can optionally be configured with a `preprocessor` layer, in | ||
* which case it will automatically apply preprocessing to string inputs during | ||
* fit()`, `predict()`, `evaluate()` and `generate()`. This is done by default | ||
* when creating the model with `fromPreset()`. | ||
* | ||
* Disclaimer: Pre-trained models are provided on an "as is" basis, without | ||
* warranties or conditions of any kind. The underlying model is provided by a | ||
* third party and subject to a separate license, available | ||
* here](https://github.com/openai/gpt-2). | ||
* | ||
* Use `generate()` to do text generation. | ||
* ```js | ||
* const gpt2LM = GPT2CausalLM.fromPreset('gpt2_base_en'); | ||
* gpt2LM.generate("I want to say", max_length=30); | ||
* // Generate with batched prompts. | ||
* gpt2LM.generate(["This is a", "Where are you"], max_length=30); | ||
* ``` | ||
* | ||
* Use `generate()` without preprocessing. | ||
* ```js | ||
* // Prompt the model with `5338, 318` (the token ids for `"Who is"`). | ||
* // Use `"paddingMask"` to indicate values that should not be overridden. | ||
* const prompt = { | ||
* tokenIds: tf.tensor([[5338, 318, 0, 0, 0], [5338, 318, 0, 0, 0]]), | ||
* paddingMask: tf.tensor([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0]]]), | ||
* }; | ||
* const gpt2LM = GPT2CausalLM.from_preset('gpt2_base_en', null); | ||
* gpt2LM.generate(prompt); | ||
* ``` | ||
* | ||
* Call `fit()` on a single batch. | ||
* ```js | ||
* const features = ['The quick brown fox jumped.', 'I forgot my homework.']; | ||
* const gpt2LM = GPT2CausalLM.from_preset('gpt2_base_en'); | ||
* gpt2LM.fit(features, {batchSize: 2}); | ||
* ``` | ||
* | ||
* Call `fit()` without preprocessing. | ||
* ```js | ||
* const x = { | ||
* tokenIds: tf.tensor([[50256, 1, 2, 3, 4], [50256, 1, 2, 3, 4]]), | ||
* paddingMask: tf.tensor([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]), | ||
* }; | ||
* const y = tf.tensor([[1, 2, 3, 4, 50256], [1, 2, 3, 4, 50256]]); | ||
* const sw = tf.tensor([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]); | ||
* const gpt2LM = GPT2CausalLM.from_preset('gpt2_base_en', null); | ||
* gpt2LM.fit(x, y, {sampleWeight: sw, batchSize: 2}); | ||
* ``` | ||
* | ||
* Custom backbone and vocabulary. | ||
* ```js | ||
* const features = ["a quick fox.", "a fox quick."]; | ||
* const vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}; | ||
* const merges = [ | ||
* "Ġ q", "u i", "c k", "ui ck", "Ġq uick", "Ġ f", "o x", "Ġf ox" | ||
* ]; | ||
* const tokenizer = new GPT2Tokenizer({vocabulary: vocab, merges}); | ||
* const preprocessor = new GPT2CausalLMPreprocessor({ | ||
* tokenizer, | ||
* sequence_length: 128, | ||
* }); | ||
* const backbone = new GPT2Backbone({ | ||
* vocabularysize: 30552, | ||
* numlayers: 4, | ||
* numheads: 4, | ||
* hiddendim: 256, | ||
* intermediatedim: 512, | ||
* maxSequenceLength: 128, | ||
* }); | ||
* const gpt2LM = new GPT2CausalLM({backbone, preprocessor}); | ||
* gpt2LM.fit(features, {batch_size: 2}); | ||
* ``` | ||
*/ | ||
export class GPT2CausalLM extends GenerativeTask { | ||
/** @nocollapse */ | ||
static override className = 'GPT2CausalLM'; | ||
|
||
constructor(args: GPT2CausalLMArgs) { | ||
super(args); | ||
throw new NotImplementedError(`Uses ${ReverseEmbedding}.`); | ||
} | ||
|
||
static override presets<T extends serialization.Serializable>( | ||
cls: serialization.SerializableConstructor<T> | ||
): {} { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
/** | ||
* Forward pass of `GPT2CausalLM` with cache. | ||
* | ||
* `callWithCache` adds an additional forward pass for the model for | ||
* autoregressive inference. Unlike calling the model directly, this method | ||
* allows caching previous key/value Tensors in multi-head attention layer, | ||
* and avoids recomputing the outputs of seen tokens. | ||
* | ||
* @param tokenIds a dense int Tensor with shape `[batchSize, maxLength]`. | ||
* @param cache a dense float Tensor, the cache of key and value. | ||
* @param cacheUpdateIndex Integer. The index of current inputs in the whole | ||
* sequence. | ||
* @returns [logits, hiddenStates, cache], where `logits` is the | ||
* language model logits for the input tokenIds, `hiddenStates` is | ||
* the final hidden representation of the input tokens, and `cache` is | ||
* the decoding cache. | ||
*/ | ||
callWithCache( | ||
tokenIds: Tensor, | ||
cache: Tensor, | ||
cacheUpdateIndex: number | ||
): [Tensor, Tensor, Tensor] { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
/** | ||
* Build an empty cache for use with `callWithCache()`. | ||
*/ | ||
private buildCache(tokenIds: Tensor): [Tensor, Tensor] { | ||
throw new NotImplementedError(); | ||
} | ||
|
||
/** | ||
* A compilable generation function for a single batch of inputs. | ||
* | ||
* This function represents the inner generation function for a single batch | ||
* of inputs. | ||
* | ||
* @param inputs An object with two keys `tokenIds` and `paddingMask` and | ||
* batched tensor values. | ||
* @param endTokenId The id of the end token to stop on. If all | ||
* sequences have produced a new `endTokenId`, generation will stop. | ||
*/ | ||
override generateStep( | ||
inputs: NamedTensorMap, | ||
endTokenId: number | ||
): NamedTensorMap { | ||
throw new NotImplementedError(`Uses ${this.buildCache}`); | ||
} | ||
} | ||
serialization.registerClass(GPT2CausalLM); |
Oops, something went wrong.