Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[tfjs-layers[ Fix Layer mem leak for 1D targets #5988

Merged
merged 4 commits into from
Jan 6, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions tfjs-layers/src/engine/training.ts
Original file line number Diff line number Diff line change
Expand Up @@ -1535,6 +1535,8 @@ export class LayersModel extends Container implements tfc.InferenceModel {
lossValues.push(v[0]);
}
tfc.dispose(losses);
disposeNewTensors(standardizeOut[0], x);
disposeNewTensors(standardizeOut[1], y);
return singletonOrArray(lossValues);
}

Expand Down
6 changes: 6 additions & 0 deletions tfjs-layers/src/engine/training_tensors.ts
Original file line number Diff line number Diff line change
Expand Up @@ -423,6 +423,8 @@ export async function fitTensors(
model.isTraining = true;
let inputs: Tensor[];
let targets: Tensor[];
let originalInputs: Tensor[];
let originalTargets: Tensor[];
let inputValX: Tensor|Tensor[];
let inputValY: Tensor|Tensor[];
let valX: Tensor|Tensor[];
Expand Down Expand Up @@ -481,8 +483,10 @@ export async function fitTensors(
Math.floor(inputs[0].shape[0] * (1 - args.validationSplit));
const originalBatchSize = inputs[0].shape[0];
valX = sliceArrays(inputs, splitAt, originalBatchSize) as Tensor[];
originalInputs = inputs;
inputs = sliceArrays(inputs, 0, splitAt) as Tensor[];
valY = sliceArrays(targets, splitAt, originalBatchSize) as Tensor[];
originalTargets = targets;
targets = sliceArrays(targets, 0, splitAt) as Tensor[];
// TODO(cais): Once sampleWeights becomes available, slice it to get
// valSampleWeights.
Expand Down Expand Up @@ -537,6 +541,8 @@ export async function fitTensors(
// Memory clean up.
disposeNewTensors(inputs, x);
disposeNewTensors(targets, y);
disposeNewTensors(originalInputs, x);
disposeNewTensors(originalTargets, y);
disposeNewTensors(valX as Tensor[], inputValX);
disposeNewTensors(valY as Tensor[], inputValY);
if (sampleWeights != null) {
Expand Down
27 changes: 27 additions & 0 deletions tfjs-layers/src/engine/training_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -1999,6 +1999,33 @@ describeMathCPUAndWebGL2('LayersModel.fit: No memory leak', () => {
done();
});

it('Repeated fit calls of 1d target leads to no memory leak: validationSplit',
async done => {
createDenseModelAndData();

const validationSplit = 0.4;
targets = ones([numSamples]);
model.compile({optimizer: 'SGD', loss: 'meanSquaredError'});
const numTensors0 = memory().numTensors;
// Use batchSize === numSamples to get exactly one batch.
await model.fit(
inputs, targets,
{batchSize: 2, epochs: 10, validationSplit, shuffle: true});
for (let i = 0; i < 2; ++i) {
await model.fit(
inputs, targets,
{batchSize: 2, epochs: 10, validationSplit, shuffle: true});
const numTensorsNow = memory().numTensors;
if (numTensorsNow > numTensors0) {
done.fail(
`Memory leak detected during fit(): Leaked ` +
`${numTensorsNow - numTensors0} tensor(s) after the ` +
`${i + 1}-th fit() call.`);
}
}
done();
});

it('Repeated fit calls leads to no memory leak: validationData',
async done => {
createDenseModelAndData();
Expand Down
8 changes: 6 additions & 2 deletions tfjs-layers/src/utils/test_utils.ts
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,10 @@ export function describeMathCPUAndGPU(testName: string, tests: () => void) {
*/
export function describeMathCPUAndWebGL2(testName: string, tests: () => void) {
describeWithFlags(
testName, {predicate: testEnv => testEnv.flags['WEBGL_VERSION'] !== 1},
testName, {
predicate: testEnv =>
(testEnv.flags == null || testEnv.flags['WEBGL_VERSION'] === 2)
},
() => {
tests();
});
Expand Down Expand Up @@ -134,7 +137,8 @@ export function describeMathWebGL2(testName: string, tests: () => void) {
describeWithFlags(
testName, {
predicate: testEnv => testEnv.backendName === 'webgl' &&
testEnv.flags['WEBGL_VERSION'] !== 1
(testEnv.flags == null || testEnv.flags['WEBGL_VERSION'] === 2)

},
() => {
tests();
Expand Down