-
Notifications
You must be signed in to change notification settings - Fork 115
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
29 changed files
with
4,016 additions
and
1,191 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
|
||
import tensorflow as tf | ||
import tensorlayer as tl | ||
from tensorlayer.layers import * | ||
|
||
|
||
flags = tf.app.flags | ||
FLAGS = flags.FLAGS | ||
|
||
|
||
|
||
def generator_simplified_api(inputs, is_train=True, reuse=False): | ||
image_size = 64 | ||
s2, s4, s8, s16 = int(image_size/2), int(image_size/4), int(image_size/8), int(image_size/16) | ||
gf_dim = 64 # Dimension of gen filters in first conv layer. [64] | ||
c_dim = FLAGS.c_dim # n_color 3 | ||
batch_size = FLAGS.batch_size # 64 | ||
|
||
w_init = tf.random_normal_initializer(stddev=0.02) | ||
gamma_init = tf.random_normal_initializer(1., 0.02) | ||
|
||
with tf.variable_scope("generator", reuse=reuse): | ||
tl.layers.set_name_reuse(reuse) | ||
|
||
net_in = InputLayer(inputs, name='g/in') | ||
net_h0 = DenseLayer(net_in, n_units=gf_dim*8*s16*s16, W_init=w_init, | ||
act = tf.identity, name='g/h0/lin') | ||
net_h0 = ReshapeLayer(net_h0, shape=[-1, s16, s16, gf_dim*8], name='g/h0/reshape') | ||
net_h0 = BatchNormLayer(net_h0, act=tf.nn.relu, is_train=is_train, | ||
gamma_init=gamma_init, name='g/h0/batch_norm') | ||
|
||
net_h1 = DeConv2d(net_h0, gf_dim*4, (5, 5), out_size=(s8, s8), strides=(2, 2), | ||
padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h1/decon2d') | ||
net_h1 = BatchNormLayer(net_h1, act=tf.nn.relu, is_train=is_train, | ||
gamma_init=gamma_init, name='g/h1/batch_norm') | ||
|
||
net_h2 = DeConv2d(net_h1, gf_dim*2, (5, 5), out_size=(s4, s4), strides=(2, 2), | ||
padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h2/decon2d') | ||
net_h2 = BatchNormLayer(net_h2, act=tf.nn.relu, is_train=is_train, | ||
gamma_init=gamma_init, name='g/h2/batch_norm') | ||
|
||
net_h3 = DeConv2d(net_h2, gf_dim, (5, 5), out_size=(s2, s2), strides=(2, 2), | ||
padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h3/decon2d') | ||
net_h3 = BatchNormLayer(net_h3, act=tf.nn.relu, is_train=is_train, | ||
gamma_init=gamma_init, name='g/h3/batch_norm') | ||
|
||
net_h4 = DeConv2d(net_h3, c_dim, (5, 5), out_size=(image_size, image_size), strides=(2, 2), | ||
padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h4/decon2d') | ||
logits = net_h4.outputs | ||
net_h4.outputs = tf.nn.tanh(net_h4.outputs) | ||
return net_h4, logits | ||
|
||
|
||
def discriminator_simplified_api(inputs, is_train=True, reuse=False): | ||
df_dim = 64 # Dimension of discrim filters in first conv layer. [64] | ||
c_dim = FLAGS.c_dim # n_color 3 | ||
batch_size = FLAGS.batch_size # 64 | ||
|
||
w_init = tf.random_normal_initializer(stddev=0.02) | ||
gamma_init = tf.random_normal_initializer(1., 0.02) | ||
|
||
with tf.variable_scope("discriminator", reuse=reuse): | ||
tl.layers.set_name_reuse(reuse) | ||
|
||
net_in = InputLayer(inputs, name='d/in') | ||
net_h0 = Conv2d(net_in, df_dim, (5, 5), (2, 2), act=lambda x: tl.act.lrelu(x, 0.2), | ||
padding='SAME', W_init=w_init, name='d/h0/conv2d') | ||
|
||
net_h1 = Conv2d(net_h0, df_dim*2, (5, 5), (2, 2), act=None, | ||
padding='SAME', W_init=w_init, name='d/h1/conv2d') | ||
net_h1 = BatchNormLayer(net_h1, act=lambda x: tl.act.lrelu(x, 0.2), | ||
is_train=is_train, gamma_init=gamma_init, name='d/h1/batch_norm') | ||
|
||
net_h2 = Conv2d(net_h1, df_dim*4, (5, 5), (2, 2), act=None, | ||
padding='SAME', W_init=w_init, name='d/h2/conv2d') | ||
net_h2 = BatchNormLayer(net_h2, act=lambda x: tl.act.lrelu(x, 0.2), | ||
is_train=is_train, gamma_init=gamma_init, name='d/h2/batch_norm') | ||
|
||
net_h3 = Conv2d(net_h2, df_dim*8, (5, 5), (2, 2), act=None, | ||
padding='SAME', W_init=w_init, name='d/h3/conv2d') | ||
net_h3 = BatchNormLayer(net_h3, act=lambda x: tl.act.lrelu(x, 0.2), | ||
is_train=is_train, gamma_init=gamma_init, name='d/h3/batch_norm') | ||
|
||
net_h4 = FlattenLayer(net_h3, name='d/h4/flatten') | ||
net_h4 = DenseLayer(net_h4, n_units=1, act=tf.identity, | ||
W_init = w_init, name='d/h4/lin_sigmoid') | ||
logits = net_h4.outputs | ||
net_h4.outputs = tf.nn.sigmoid(net_h4.outputs) | ||
return net_h4, logits |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -25,4 +25,7 @@ | |
from . import rein | ||
|
||
|
||
__version__ = "1.2.3" | ||
__version__ = "1.4.2" | ||
|
||
global_flag = {} | ||
global_dict = {} |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.