Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
teorth committed May 14, 2024
2 parents ddb65ff + c6371b2 commit 21854da
Showing 1 changed file with 11 additions and 4 deletions.
15 changes: 11 additions & 4 deletions PFR/MoreRuzsaDist.lean
Original file line number Diff line number Diff line change
Expand Up @@ -41,11 +41,18 @@ lemma mutual_comp_le (μ : Measure Ω) [IsProbabilityMeasure μ] (hX : Measurabl
exact condEntropy_comp_ge μ hX hY f

/--
Let $X,Y$ be random variables. For any functions $f, g$ on the ranges of $X, Y$ respectively, we have $\bbI[f(X) : g(Y )] \leq \bbI[X : Y]$.
Let $X,Y$ be random variables. For any functions $f, g$ on the ranges of $X, Y$ respectively, we
have $\bbI[f(X) : g(Y)] \leq \bbI[X : Y]$.
-/
lemma mutual_comp_comp_le (μ : Measure Ω) [IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y)
(f : S → U) (g : T → V) [FiniteRange X] [FiniteRange Y]:
I[f ∘ X : g ∘ Y ; μ] ≤ I[X : Y ; μ] := by sorry
lemma mutual_comp_comp_le (μ : Measure Ω) [IsProbabilityMeasure μ] (hX : Measurable X)
(hY : Measurable Y) (f : S → U) (g : T → V) (hf : Measurable f) (hg : Measurable g) [
FiniteRange X] [FiniteRange Y]:
I[f ∘ X : g ∘ Y ; μ] ≤ I[X : Y ; μ] :=
calc
_ ≤ I[X : g ∘ Y ; μ] := mutual_comp_le μ hX (Measurable.comp hg hY) f hf
_ = I[g ∘ Y : X ; μ] := mutualInfo_comm hX (Measurable.comp hg hY) μ
_ ≤ I[Y : X ; μ] := mutual_comp_le μ hY hX g hg
_ = I[X : Y ; μ] := mutualInfo_comm hY hX μ

/--
Let $X,Y,Z$. For any functions $f, g$
Expand Down

0 comments on commit 21854da

Please sign in to comment.