This repository contains a single file, header-only, no-dependencies, C library for generating Poisson disk samplings in arbitrary dimensions. The implementation uses the techniques reported in the paper Fast Poisson Disk Sampling in Arbitrary Dimensions published by Rook Bridson in 2007.
Main features:
- Custom allocator interface for memory management at run-time.
- Possibility to override libc function at compile-time (using macros).
Poisson disk sampling aims to generate a set of points within a bounded region such that no two points are closer than some user-specified radius to each other. Let's consider a simple example written in C.
/* C11 */
#include <assert.h> /* assert */
#include <stddef.h> /* ptrdiff_t */
#include <stdint.h> /* UINT64_C, etc */
#include <stdio.h> /* printf */
#include <stdlib.h> /* EXIT_FAILURE, etc */
#include <string.h> /* memset */
#define TPH_POISSON_IMPLEMENTATION
#include "thinks/tph_poisson.h"
static_assert(sizeof(tph_poisson_real) == sizeof(float), "");
int main(int argc, char *argv[])
{
(void)argc;
(void)argv;
const tph_poisson_real bounds_min[2] = {
(tph_poisson_real)-10, (tph_poisson_real)-10 };
const tph_poisson_real bounds_max[2] = {
(tph_poisson_real)10, (tph_poisson_real)10 };
/* Configure arguments. */
const tph_poisson_args args = {
.bounds_min = bounds_min,
.bounds_max = bounds_max,
.radius = (tph_poisson_real)3,
.ndims = INT32_C(2),
.max_sample_attempts = UINT32_C(30),
.seed = UINT64_C(1981) };
/* Using default allocator (libc malloc). */
const tph_poisson_allocator *alloc = NULL;
/* Initialize empty sampling. */
tph_poisson_sampling sampling;
memset(&sampling, 0, sizeof(tph_poisson_sampling));
/* Populate sampling with points. */
const int ret = tph_poisson_create(&args, alloc, &sampling);
if (ret != TPH_POISSON_SUCCESS) {
/* No need to destroy sampling here! */
printf("Failed creating Poisson sampling! Error code: %d\n", ret);
return EXIT_FAILURE;
}
/* Retrieve sampling points. */
const tph_poisson_real *samples = tph_poisson_get_samples(&sampling);
if (samples == NULL) {
/* Shouldn't happen since we check the return value from tph_poisson_create! */
printf("Bad samples!\n");
tph_poisson_destroy(&sampling);
return EXIT_FAILURE;
}
/* Print first and last sample positions. */
assert(sampling.nsamples >= 2);
printf("\n%s:\n"
"samples[%td] = ( %.3f, %.3f )\n"
"...\n"
"samples[%td] = ( %.3f, %.3f )\n\n",
"simple (C)",
(ptrdiff_t)0,
(double)samples[0],
(double)samples[1],
(ptrdiff_t)(sampling.nsamples - 1),
(double)samples[(sampling.nsamples - 1) * sampling.ndims],
(double)samples[(sampling.nsamples - 1) * sampling.ndims + 1]);
/* Free memory. */
tph_poisson_destroy(&sampling);
return EXIT_SUCCESS;
}
When using C++ it is possible to safely manage the memory allocated by the tph_poisson functions (example), as illustrated below:
// C++17
#include <array> // std::array
#include <cassert> // assert
#include <cstdint> // UINT64_C, etc
#include <cstdio> // std::printf
#include <functional> // std::function
#include <memory> // std::unique_ptr
#define TPH_POISSON_IMPLEMENTATION
#include "thinks/tph_poisson.h"
static_assert(std::is_same_v<tph_poisson_real, float>);
int main(int /*argc*/, char * /*argv*/[])
{
constexpr std::array<tph_poisson_real, 2> bounds_min{
static_cast<tph_poisson_real>(-10), static_cast<tph_poisson_real>(-10) };
constexpr std::array<tph_poisson_real, 2> bounds_max{
static_cast<tph_poisson_real>(10), static_cast<tph_poisson_real>(10) };
// Configure arguments.
tph_poisson_args args = {};
args.radius = static_cast<tph_poisson_real>(3);
args.ndims = INT32_C(2);
args.bounds_min = bounds_min.data();
args.bounds_max = bounds_max.data();
args.max_sample_attempts = UINT32_C(30);
args.seed = UINT64_C(1981);
// Using default allocator (libc malloc).
const tph_poisson_allocator *alloc = NULL;
// Initialize empty sampling.
using unique_poisson_ptr =
std::unique_ptr<tph_poisson_sampling, std::function<void(tph_poisson_sampling *)>>;
auto sampling = unique_poisson_ptr{ new tph_poisson_sampling{}, [](tph_poisson_sampling *s) {
tph_poisson_destroy(s);
delete s;
} };
// Populate sampling with points.
if (const int ret = tph_poisson_create(&args, alloc, sampling.get());
ret != TPH_POISSON_SUCCESS) {
std::printf("Failed creating Poisson sampling! Error code: %d\n", ret);
return EXIT_FAILURE;
};
// Retrieve sampling points.
const tph_poisson_real *samples = tph_poisson_get_samples(sampling.get());
if (samples == nullptr) {
// Shouldn't happen since we check the return value from tph_poisson_create!
std::printf("Bad samples!\n");
return EXIT_FAILURE;
}
// Print first and last sample positions.
assert(sampling->nsamples >= 2);
std::printf("\n%s:\n"
"samples[%td] = ( %.3f, %.3f )\n"
"...\n"
"samples[%td] = ( %.3f, %.3f )\n\n",
"simple (Cpp)",
static_cast<ptrdiff_t>(0),
static_cast<double>(samples[0]),
static_cast<double>(samples[1]),
static_cast<ptrdiff_t>(sampling->nsamples - 1),
static_cast<double>(samples[(sampling->nsamples - 1) * sampling->ndims]),
static_cast<double>(samples[(sampling->nsamples - 1) * sampling->ndims + 1]));
// tph_poisson_destroy is called by unique_poisson_ptr destructor.
return EXIT_SUCCESS;
}
The code snippets above generate sets of points in the 2D (ndims
) range [-10, 10] (bounds_min
/ bounds_max
) separated by a distance (radius
) of 3 units. The image below visualizes the results (generated using a simple Python script). On the right-hand side the radius has been plotted to illustrate the distance separating the points. Here it is "clear" that each circle contains only a single point.
Besides radius and bounds, there are two additional arguments: seed
and max_sample_attempts
. The seed
parameter is used to deterministically generate pseudo-random numbers. Changing the seed gives slightly different patterns. The max_sample_attempts
controls the number of attempts that are made at finding neighboring points for each sample. Increasing this number typically leads to a more tightly packed sampling, at the cost of additional computation time. The images below illustrate the effects of varying seed
and max_sample_attempts
.
Poisson disk sampling generates samples from a blue noise distribution. We can verify this by plotting the corresponding periodogram, noticing that there are minimal low frequency components (close to the center) and no concentrated spikes in energy.
The image below was generated using the provided periodogram example and is an average over 100 sampling patterns (original pixel resolution was 2048x2048).
See the BUILDING document.
See the CONTRIBUTING document.
All code in this repository is released under the MIT license.