Skip to content

thonic/g-means

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 

Repository files navigation

G-Means

Implementation of the G-Means algorithm for learning k in a k-means clustering. Paper published in NIPS 2003

Parameters

  • min_obs: the minimum number of observations that a cluster can have
  • max_depth: the maximum number of times that a cluster can be split before giving up (just set this to be high, e.g. 200 or so)
  • random_state: the random seed that sklearn.MiniBatchKMeans() uses
  • strictness: how strict should the Anderson-Darling test for normality be - 0 is least strict, 4 is most strict (best to be either 3 or 4, since the test is run so many times)

Usage

gmeans = GMeans(min_obs=100,
	max_depth=500,
	random_state=1010,
	strictness=3)
gmeans.fit(iris)
gmeans.labels_

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%