Skip to content

Masari: simple, scalable, and private cryptocurrency

License

Notifications You must be signed in to change notification settings

thriftyMinnow/masari

 
 

Repository files navigation

Masari

Copyright (c) 2017-2019 The Masari Project.

Copyright (c) 2014-2018 The Monero Project.

Portions Copyright (c) 2012-2013 The Cryptonote developers.

Development resources

Vulnerability reports

  • Please contact thaerkh or cryptochangements34 to responsibly disclose vulnerabilities

Coverage

Type Status
License License
Build Build Status

Introduction

Masari is a private, secure, untraceable, decentralised digital currency. You are your bank, you control your funds, and nobody can trace your transfers unless you allow them to do so.

Privacy: Masari uses a cryptographically sound system to allow you to send and receive funds without your transactions being easily revealed on the blockchain (the ledger of transactions that everyone has). This ensures that your purchases, receipts, and all transfers remain absolutely private by default.

Security: Using the power of a distributed peer-to-peer consensus network, every transaction on the network is cryptographically secured. Individual wallets have a 25 word mnemonic seed that is only displayed once, and can be written down to backup the wallet. Wallet files are encrypted with a passphrase to ensure they are useless if stolen.

Untraceability: By taking advantage of ring signatures, a special property of a certain type of cryptography, Masari is able to ensure that transactions are not only untraceable, but have an optional measure of ambiguity that ensures that transactions cannot easily be tied back to an individual user or computer.

Scalability: Masari aims to scale as a cryptocurrency to acheive high transaction speed and capacity while maintaining all of its privacy features as it explores unique solutions such as blocktree.

About this project

This is the core implementation of Masari, a scalability-focused fork of Monero. It is open source and completely free to use without restrictions, except for those specified in the license agreement below. There are no restrictions on anyone creating an alternative implementation of Masari that uses the protocol and network in a compatible manner.

As with many development projects, the repository on Github is considered to be the "staging" area for the latest changes. Before changes are merged into that branch on the main repository, they are tested by individual developers in their own branches, submitted as a pull request, and then subsequently tested by contributors who focus on testing and code reviews. That having been said, the repository should be carefully considered before using it in a production environment, unless there is a patch in the repository for a particular show-stopping issue you are experiencing. It is generally a better idea to use a tagged release for stability.

Anyone is welcome to contribute to Masari's codebase! If you have a fix or code change, feel free to submit it as a pull request directly to the "master" branch. In cases where the change is relatively small or does not affect other parts of the codebase it may be merged in immediately by any one of the collaborators. On the other hand, if the change is particularly large or complex, it is expected that it will be discussed at length either well in advance of the pull request being submitted, or even directly on the pull request.

Supporting the project

Masari is a 100% community-sponsored endeavor. If you want to join our efforts, the easiest thing you can do is support the project financially.

The Masari donation address is: 5nYWvcvNThsLaMmrsfpRLBRou1RuGtLabUwYH7v6b88bem2J4aUwsoF33FbJuqMDgQjpDRTSpLCZu3dXpqXicE2uSWS4LUP (viewkey: 99e21e00cce073c126e9aed800c9e2e82518534b3924b035a29436ff4f75bc0c)

The Monero donation address is: 4A57eA3so6bEE8FUcaN1KtMXD3sxjjbvcKD3MF1pUgRi5PNHTpB7sYN2DmJv3EXxtZCWeG88tsVLzdfZJcmUFm52SbrfJWr (viewkey: c7a7c141581ac4436ba8bfb81dd67234720c565c696ef154a25c7e7314ce4b08)

The Bitcoin donation address is: 1J1he4qtTuNpCxyEBozkeKfDpoeYxfE3rj

There are a few mining pools that kindly donate a portion of their fees, a list of them can be found on our Bitcointalk post. Others can be found on MasariPools and CryptoIsMe.

License

See LICENSE.

Contributing

If you want to help out, see CONTRIBUTING for a set of guidelines.

Scheduled software upgrades

Masari uses a fixed-schedule software upgrade (hard fork) mechanism to implement new features. This means that users of Masari (end users and service providers) should run current versions and upgrade their software on a regular schedule. Software upgrades occur during the months of April and October. The required software for these upgrades will be available prior to the scheduled date. Please check the repository prior to this date for the proper Masari software version. Below is the historical schedule and the projected schedule for the next upgrade. Dates are provided in the format YYYY-MM-DD.

Fork Date Consensus version Minimum Masari Version Recommended Masari Version Details
2017-10-05 v2 0.1.2.0 0.1.2.0 Difficulty adjustment algorithm adjusted
2017-11-29 v3 0.1.3.0 0.1.3.1 Difficulty adjustment algorithm updated to WWHM
2017-12-06 v4 0.1.4.0 0.1.4.0 Difficulty adjustment tweaks
2018-05-01 v5 0.2.0.0 0.2.0.2 Upstream track of v0.12.0 with Multisig, Subaddresses, CN variant 1
2018-05-05 v6 0.2.3.0 0.2.3.0 LWMA + stricter FTL settings
2018-06-18 v7 0.2.4.0 0.2.4.5 CryptoNight-Fast PoW
2019-01-26 v8 0.3.0.0 0.3.0.0 SECOR (uncle mining) protocol, multi-output Bulletproofs, CNFastv2

X's indicate that these details have not been determined as of commit date.

Release staging schedule and protocol

Approximately three months prior to a scheduled software upgrade, a branch from Master will be created with the new release version tag. Pull requests that address bugs should then be made to both Master and the new release branch. Pull requests that require extensive review and testing (generally, optimizations and new features) should not be made to the release branch.

Compiling Masari from source

Dependencies

The following table summarizes the tools and libraries required to build. A few of the libraries are also included in this repository (marked as "Vendored"). By default, the build uses the library installed on the system, and ignores the vendored sources. However, if no library is found installed on the system, then the vendored source will be built and used. The vendored sources are also used for statically-linked builds because distribution packages often include only shared library binaries (.so) but not static library archives (.a).

Dep Min. version Vendored Debian/Ubuntu pkg Arch pkg Fedora Optional Purpose
GCC 4.7.3 NO build-essential base-devel gcc NO
CMake 3.0.0 NO cmake cmake cmake NO
pkg-config any NO pkg-config base-devel pkgconf NO
Boost 1.58 NO libboost-all-dev boost boost-devel NO C++ libraries
OpenSSL basically any NO libssl-dev openssl openssl-devel NO sha256 sum
libzmq 3.0.0 NO libzmq3-dev zeromq cppzmq-devel NO ZeroMQ library
libunbound 1.4.16 YES libunbound-dev unbound unbound-devel NO DNS resolver
libsodium ? NO libsodium-dev ? libsodium-devel NO libsodium
libminiupnpc 2.0 YES libminiupnpc-dev miniupnpc miniupnpc-devel YES NAT punching
libunwind any NO libunwind8-dev libunwind libunwind-devel YES Stack traces
liblzma any NO liblzma-dev xz xz-devel YES For libunwind
libreadline 6.3.0 NO libreadline6-dev readline readline-devel YES Input editing
ldns 1.6.17 NO libldns-dev ldns ldns-devel YES SSL toolkit
expat 1.1 NO libexpat1-dev expat expat-devel YES XML parsing
GTest 1.5 YES libgtest-dev^ gtest gtest-devel YES Test suite
Doxygen any NO doxygen doxygen doxygen YES Documentation
Graphviz any NO graphviz graphviz graphviz YES Documentation

[^] On Debian/Ubuntu libgtest-dev only includes sources and headers. You must build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make && sudo mv libg* /usr/lib/

One-liner to install all dependencies (Debian/Ubuntu): sudo apt update && sudo apt install build-essential cmake pkg-config libboost-all-dev libssl-dev libzmq3-dev libunbound-dev libsodium-dev libminiupnpc-dev libunwind8-dev liblzma-dev libreadline6-dev libldns-dev libexpat1-dev libgtest-dev doxygen graphviz

Cloning the repository

Clone recursively to pull-in needed submodule(s):

$ git clone --recursive https://github.com/masari-project/masari

If you already have a repo cloned, initialize and update:

$ cd masari && git submodule init && git submodule update

Build instructions

Masari uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.

On Linux and OS X

  • Install the dependencies

  • Change to the root of the source code directory and build:

      cd masari
      make
    

    Optional: If your machine has several cores and enough memory, enable parallel build by running make -j<number of threads> instead of make. For this to be worthwhile, the machine should have one core and about 2GB of RAM available per thread.

    Note: If cmake can not find zmq.hpp file on OS X, installing zmq.hpp from https://github.com/zeromq/cppzmq to /usr/local/include should fix that error.

  • The resulting executables can be found in build/release/bin

  • Add PATH="$PATH:$HOME/masari/build/release/bin" to .profile

  • Run Masari with masarid --detach

  • Optional: build and run the test suite to verify the binaries:

      make release-test
    

    NOTE: core_tests test may take a few hours to complete.

  • Optional: to build binaries suitable for debugging:

       make debug
    
  • Optional: to build statically-linked binaries:

       make release-static
    
  • Optional: build documentation in doc/html (omit HAVE_DOT=YES if graphviz is not installed):

      HAVE_DOT=YES doxygen Doxyfile
    

On Windows:

Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.

Preparing the build environment

  • Download and install the MSYS2 installer, either the 64-bit or the 32-bit package, depending on your system.

  • Open the MSYS shell via the MSYS2 Shell shortcut

  • Update packages using pacman:

      pacman -Syuu  
    
  • Exit the MSYS shell using Alt+F4

  • Edit the properties for the MSYS2 Shell shortcut changing "msys2_shell.bat" to "msys2_shell.cmd -mingw64" for 64-bit builds or "msys2_shell.cmd -mingw32" for 32-bit builds

  • Restart MSYS shell via modified shortcut and update packages again using pacman:

      pacman -Syuu  
    
  • Install dependencies:

    To build for 64-bit Windows:

      pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost mingw-w64-x86_64-openssl mingw-w64-x86_64-zeromq mingw-w64-x86_64-libsodium
    

    To build for 32-bit Windows:

      pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost mingw-w64-i686-openssl mingw-w64-i686-zeromq mingw-w64-i686-libsodium
    
  • Open the MingW shell via MinGW-w64-Win64 Shell shortcut on 64-bit Windows or MinGW-w64-Win64 Shell shortcut on 32-bit Windows. Note that if you are running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.

Building

  • If you are on a 64-bit system, run:

      make release-static-win64
    
  • If you are on a 32-bit system, run:

      make release-static-win32
    
  • The resulting executables can be found in build/release/bin

# Create boost building directory
mkdir ~/boost
cd ~/boost

# Fetch boost source
ftp -o boost_1_64_0.tar.bz2 https://netcologne.dl.sourceforge.net/project/boost/boost/1.64.0/boost_1_64_0.tar.bz2 

# MUST output: (SHA256) boost_1_64_0.tar.bz2: OK
echo "7bcc5caace97baa948931d712ea5f37038dbb1c5d89b43ad4def4ed7cb683332 boost_1_64_0.tar.bz2" | sha256 -c
tar xfj boost_1_64_0.tar.bz2

# Fetch and apply boost patches, required for OpenBSD
ftp -o boost_test_impl_execution_monitor_ipp.patch https://raw.githubusercontent.com/openbsd/ports/bee9e6df517077a7269ff0dfd57995f5c6a10379/devel/boost/patches/patch-boost_test_impl_execution_monitor_ipp
ftp -o boost_config_platform_bsd_hpp.patch https://raw.githubusercontent.com/openbsd/ports/90658284fb786f5a60dd9d6e8d14500c167bdaa0/devel/boost/patches/patch-boost_config_platform_bsd_hpp

# MUST output: (SHA256) boost_config_platform_bsd_hpp.patch: OK
echo "1f5e59d1154f16ee1e0cc169395f30d5e7d22a5bd9f86358f738b0ccaea5e51d boost_config_platform_bsd_hpp.patch" | sha256 -c
# MUST output: (SHA256) boost_test_impl_execution_monitor_ipp.patch: OK
echo "30cec182a1437d40c3e0bd9a866ab5ddc1400a56185b7e671bb3782634ed0206 boost_test_impl_execution_monitor_ipp.patch" | sha256 -c

cd boost_1_64_0
patch -p0 < ../boost_test_impl_execution_monitor_ipp.patch
patch -p0 < ../boost_config_platform_bsd_hpp.patch

# Start building boost
echo 'using clang : : c++ : <cxxflags>"-fvisibility=hidden -fPIC" <linkflags>"" <archiver>"ar" <striper>"strip"  <ranlib>"ranlib" <rc>"" : ;' > user-config.jam
./bootstrap.sh --without-icu --with-libraries=chrono,filesystem,program_options,system,thread,test,date_time,regex,serialization,locale --with-toolset=clang
./b2 toolset=clang cxxflags="-stdlib=libc++" linkflags="-stdlib=libc++" -sICONV_PATH=/usr/local
doas ./b2 -d0 runtime-link=shared threadapi=pthread threading=multi link=static variant=release --layout=tagged --build-type=complete --user-config=user-config.jam -sNO_BZIP2=1 -sICONV_PATH=/usr/local --prefix=/usr/local install

Build cppzmq

Build the cppzmq bindings.

We assume you are compiling with a non-root user and you have doas enabled.

# Create cppzmq building directory
mkdir ~/cppzmq
cd ~/cppzmq

# Fetch cppzmq source
ftp -o cppzmq-4.2.3.tar.gz https://github.com/zeromq/cppzmq/archive/v4.2.3.tar.gz

# MUST output: (SHA256) cppzmq-4.2.3.tar.gz: OK
echo "3e6b57bf49115f4ae893b1ff7848ead7267013087dc7be1ab27636a97144d373 cppzmq-4.2.3.tar.gz" | sha256 -c
tar xfz cppzmq-4.2.3.tar.gz

# Start building cppzmq
cd cppzmq-4.2.3
mkdir build
cd build
cmake ..
doas make install

Build masari: env DEVELOPER_LOCAL_TOOLS=1 BOOST_ROOT=/usr/local make release-static

On Linux for Android (using docker):

    # Build image (select android64.Dockerfile for aarch64)
    cd utils/build_scripts/ && docker build -f android32.Dockerfile -t masari-android .
    # Create container
    docker create -it --name masari-android masari-android bash
    # Get binaries
    docker cp masari-android:/opt/android/masari/build/release/bin .

Building portable statically linked binaries

By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:

  • make release-static-linux-x86_64 builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processors
  • make release-static-linux-i686 builds binaries on Linux on x86_64 or i686 portable across POSIX systems on i686 processors
  • make release-static-linux-armv8 builds binaries on Linux portable across POSIX systems on armv8 processors
  • make release-static-linux-armv7 builds binaries on Linux portable across POSIX systems on armv7 processors
  • make release-static-linux-armv6 builds binaries on Linux portable across POSIX systems on armv6 processors
  • make release-static-win64 builds binaries on 64-bit Windows portable across 64-bit Windows systems
  • make release-static-win32 builds binaries on 64-bit or 32-bit Windows portable across 32-bit Windows systems

Running masarid

The build places the binary in bin/ sub-directory within the build directory from which cmake was invoked (repository root by default). To run in foreground:

./bin/masarid

To list all available options, run ./bin/masarid --help. Options can be specified either on the command line or in a configuration file passed by the --config-file argument. To specify an option in the configuration file, add a line with the syntax argumentname=value, where argumentname is the name of the argument without the leading dashes, for example log-level=1.

To run in background:

./bin/masarid --log-file masarid.log --detach

To run as a systemd service, copy masarid.service to /etc/systemd/system/ and masarid.conf to /etc/. The example service assumes that the user masari exists and its home is the data directory specified in the example config.

If you're on Mac, you may need to add the --max-concurrency 1 option to masari-wallet-cli, and possibly masarid, if you get crashes refreshing.

Internationalization

See README.i18n.md.

Using Tor

While Masari isn't made to integrate with Tor, it can be used wrapped with torsocks, by setting the following configuration parameters and environment variables:

  • --p2p-bind-ip 127.0.0.1 on the command line or p2p-bind-ip=127.0.0.1 in masarid.conf to disable listening for connections on external interfaces.
  • --no-igd on the command line or no-igd=1 in masarid.conf to disable IGD (UPnP port forwarding negotiation), which is pointless with Tor.
  • DNS_PUBLIC=tcp or DNS_PUBLIC=tcp://x.x.x.x where x.x.x.x is the IP of the desired DNS server, for DNS requests to go over TCP, so that they are routed through Tor. When IP is not specified, masarid uses the default list of servers defined in src/common/dns_utils.cpp.
  • TORSOCKS_ALLOW_INBOUND=1 to tell torsocks to allow masarid to bind to interfaces to accept connections from the wallet. On some Linux systems, torsocks allows binding to localhost by default, so setting this variable is only necessary to allow binding to local LAN/VPN interfaces to allow wallets to connect from remote hosts. On other systems, it may be needed for local wallets as well.
  • Do NOT pass --detach when running through torsocks with systemd, (see utils/systemd/masarid.service for details).

Example command line to start masarid through Tor:

DNS_PUBLIC=tcp torsocks masarid --p2p-bind-ip 127.0.0.1 --no-igd

Using Tor on Tails

TAILS ships with a very restrictive set of firewall rules. Therefore, you need to add a rule to allow this connection too, in addition to telling torsocks to allow inbound connections. Full example:

sudo iptables -I OUTPUT 2 -p tcp -d 127.0.0.1 -m tcp --dport 18081 -j ACCEPT
DNS_PUBLIC=tcp torsocks ./masarid --p2p-bind-ip 127.0.0.1 --no-igd --rpc-bind-ip 127.0.0.1 \
    --data-dir /home/amnesia/Persistent/your/directory/to/the/blockchain

Debugging

This section contains general instructions for debugging failed installs or problems encountered with Masari. First ensure you are running the latest version built from the Github repo.

Obtaining stack traces and core dumps on Unix systems

We generally use the tool gdb (GNU debugger) to provide stack trace functionality, and ulimit to provide core dumps in builds which crash or segfault.

  • To use gdb in order to obtain a stack trace for a build that has stalled:

Run the build.

Once it stalls, enter the following command:

gdb /path/to/masarid `pidof masarid`

Type thread apply all bt within gdb in order to obtain the stack trace

  • If however the core dumps or segfaults:

Enter ulimit -c unlimited on the command line to enable unlimited filesizes for core dumps

Enter echo core | sudo tee /proc/sys/kernel/core_pattern to stop cores from being hijacked by other tools

Run the build.

When it terminates with an output along the lines of "Segmentation fault (core dumped)", there should be a core dump file in the same directory as masarid. It may be named just core, or core.xxxx with numbers appended.

You can now analyse this core dump with gdb as follows:

gdb /path/to/masarid /path/to/dumpfile

Print the stack trace with bt

  • To run masari within gdb:

Type gdb /path/to/masarid

Pass command-line options with --args followed by the relevant arguments

Type run to run masarid

Analysing memory corruption

We use the tool valgrind for this.

Run with valgrind /path/to/masarid. It will be slow.

LMDB

Instructions for debugging suspected blockchain corruption as per @HYC

There is an mdb_stat command in the LMDB source that can print statistics about the database but it's not routinely built. This can be built with the following command:

cd ~/masari/external/db_drivers/liblmdb && make

The output of mdb_stat -ea <path to blockchain dir> will indicate inconsistencies in the blocks, block_heights and block_info table.

The output of mdb_dump -s blocks <path to blockchain dir> and mdb_dump -s block_info <path to blockchain dir> is useful for indicating whether blocks and block_info contain the same keys.

These records are dumped as hex data, where the first line is the key and the second line is the data.

About

Masari: simple, scalable, and private cryptocurrency

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 83.8%
  • C 10.7%
  • CMake 2.1%
  • Objective-C 1.7%
  • Makefile 0.8%
  • Shell 0.4%
  • Other 0.5%