-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'a2c' of github.com:chenDRAG/tianshou into a2c
- Loading branch information
Showing
25 changed files
with
240 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Binary file added
BIN
+405 KB
examples/mujoco/benchmark/InvertedDoublePendulum-v2/reinforce/figure.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# Benchmark Result | ||
|
||
## Ant-v3 | ||
|
||
![](Ant-v3/offpolicy.png) | ||
|
||
## HalfCheetah-v3 | ||
|
||
![](HalfCheetah-v3/offpolicy.png) | ||
|
||
## Hopper-v3 | ||
|
||
![](Hopper-v3/offpolicy.png) | ||
|
||
## Walker2d-v3 | ||
|
||
![](Walker2d-v3/offpolicy.png) | ||
|
||
## Swimmer-v3 | ||
|
||
![](Swimmer-v3/offpolicy.png) | ||
|
||
## Humanoid-v3 | ||
|
||
![](Humanoid-v3/offpolicy.png) | ||
|
||
## Reacher-v2 | ||
|
||
![](Reacher-v2/offpolicy.png) | ||
|
||
## InvertedPendulum-v2 | ||
|
||
![](InvertedPendulum-v2/offpolicy.png) | ||
|
||
## InvertedDoublePendulum-v2 | ||
|
||
![](InvertedDoublePendulum-v2/offpolicy.png) |
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import os | ||
import gym | ||
import torch | ||
import datetime | ||
import argparse | ||
import numpy as np | ||
from torch import nn | ||
from torch.optim.lr_scheduler import LambdaLR | ||
from torch.utils.tensorboard import SummaryWriter | ||
from torch.distributions import Independent, Normal | ||
|
||
from tianshou.policy import PGPolicy | ||
from tianshou.utils import BasicLogger | ||
from tianshou.env import SubprocVectorEnv | ||
from tianshou.utils.net.common import Net | ||
from tianshou.trainer import onpolicy_trainer | ||
from tianshou.utils.net.continuous import ActorProb | ||
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--task', type=str, default='HalfCheetah-v3') | ||
parser.add_argument('--seed', type=int, default=0) | ||
parser.add_argument('--buffer-size', type=int, default=4096) | ||
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) | ||
parser.add_argument('--lr', type=float, default=1e-3) | ||
parser.add_argument('--gamma', type=float, default=0.99) | ||
parser.add_argument('--epoch', type=int, default=100) | ||
parser.add_argument('--step-per-epoch', type=int, default=30000) | ||
parser.add_argument('--step-per-collect', type=int, default=2048) | ||
parser.add_argument('--repeat-per-collect', type=int, default=1) | ||
# batch-size >> step-per-collect means caculating all data in one singe forward. | ||
parser.add_argument('--batch-size', type=int, default=99999) | ||
parser.add_argument('--training-num', type=int, default=64) | ||
parser.add_argument('--test-num', type=int, default=10) | ||
parser.add_argument('--logdir', type=str, default='log') | ||
parser.add_argument('--render', type=float, default=0.) | ||
parser.add_argument( | ||
'--device', type=str, | ||
default='cuda' if torch.cuda.is_available() else 'cpu') | ||
parser.add_argument('--resume-path', type=str, default=None) | ||
# reinforce special | ||
parser.add_argument('--rew-norm', type=int, default=True) | ||
# "clip" option also works well. | ||
parser.add_argument('--action-bound-method', type=str, default="tanh") | ||
parser.add_argument('--lr-decay', type=int, default=True) | ||
return parser.parse_args() | ||
|
||
|
||
def test_reinforce(args=get_args()): | ||
env = gym.make(args.task) | ||
args.state_shape = env.observation_space.shape or env.observation_space.n | ||
args.action_shape = env.action_space.shape or env.action_space.n | ||
args.max_action = env.action_space.high[0] | ||
print("Observations shape:", args.state_shape) | ||
print("Actions shape:", args.action_shape) | ||
print("Action range:", np.min(env.action_space.low), | ||
np.max(env.action_space.high)) | ||
# train_envs = gym.make(args.task) | ||
train_envs = SubprocVectorEnv( | ||
[lambda: gym.make(args.task) for _ in range(args.training_num)], | ||
norm_obs=True) | ||
# test_envs = gym.make(args.task) | ||
test_envs = SubprocVectorEnv( | ||
[lambda: gym.make(args.task) for _ in range(args.test_num)], | ||
norm_obs=True, obs_rms=train_envs.obs_rms, update_obs_rms=False) | ||
|
||
# seed | ||
np.random.seed(args.seed) | ||
torch.manual_seed(args.seed) | ||
train_envs.seed(args.seed) | ||
test_envs.seed(args.seed) | ||
# model | ||
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, | ||
activation=nn.Tanh, device=args.device) | ||
actor = ActorProb(net_a, args.action_shape, max_action=args.max_action, | ||
unbounded=True, device=args.device).to(args.device) | ||
torch.nn.init.constant_(actor.sigma_param, -0.5) | ||
for m in actor.modules(): | ||
if isinstance(m, torch.nn.Linear): | ||
# orthogonal initialization | ||
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2)) | ||
torch.nn.init.zeros_(m.bias) | ||
# do last policy layer scaling, this will make initial actions have (close to) | ||
# 0 mean and std, and will help boost performances, | ||
# see https://arxiv.org/abs/2006.05990, Fig.24 for details | ||
for m in actor.mu.modules(): | ||
if isinstance(m, torch.nn.Linear): | ||
torch.nn.init.zeros_(m.bias) | ||
m.weight.data.copy_(0.01 * m.weight.data) | ||
|
||
optim = torch.optim.Adam(actor.parameters(), lr=args.lr) | ||
lr_scheduler = None | ||
if args.lr_decay: | ||
# decay learning rate to 0 linearly | ||
max_update_num = np.ceil( | ||
args.step_per_epoch / args.step_per_collect) * args.epoch | ||
|
||
lr_scheduler = LambdaLR( | ||
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num) | ||
|
||
def dist(*logits): | ||
return Independent(Normal(*logits), 1) | ||
|
||
policy = PGPolicy(actor, optim, dist, discount_factor=args.gamma, | ||
reward_normalization=args.rew_norm, action_scaling=True, | ||
action_bound_method=args.action_bound_method, | ||
lr_scheduler=lr_scheduler, action_space=env.action_space) | ||
|
||
# collector | ||
if args.training_num > 1: | ||
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs)) | ||
else: | ||
buffer = ReplayBuffer(args.buffer_size) | ||
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) | ||
test_collector = Collector(policy, test_envs) | ||
# log | ||
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S") | ||
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_reinforce' | ||
log_path = os.path.join(args.logdir, args.task, 'reinforce', log_file) | ||
writer = SummaryWriter(log_path) | ||
writer.add_text("args", str(args)) | ||
logger = BasicLogger(writer, update_interval=10) | ||
|
||
def save_fn(policy): | ||
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | ||
|
||
# trainer | ||
result = onpolicy_trainer( | ||
policy, train_collector, test_collector, args.epoch, args.step_per_epoch, | ||
args.repeat_per_collect, args.test_num, args.batch_size, | ||
step_per_collect=args.step_per_collect, save_fn=save_fn, logger=logger, | ||
test_in_train=False) | ||
|
||
# Let's watch its performance! | ||
policy.eval() | ||
test_envs.seed(args.seed) | ||
test_collector.reset() | ||
result = test_collector.collect(n_episode=args.test_num, render=args.render) | ||
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}') | ||
|
||
|
||
if __name__ == '__main__': | ||
test_reinforce() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters