Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add ppo_multi_example for robotics #1

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 89 additions & 0 deletions examples/ppo_multivariate_normal_robotics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import tensorflow as tf
import gym
import numpy as np
import time

import tensorflow_probability as tfp
tfd = tfp.distributions # TODO: use zhusuan.distributions

import tianshou as ts


if __name__ == '__main__':
env = gym.make('FetchReach-v1')
env.env.reward_type = 'dense' #change reward_type (sparse or dense)
env = gym.wrappers.FlattenDictWrapper(env, dict_keys=['achieved_goal', 'desired_goal', 'observation'])

observation_dim = env.observation_space.shape #(16,)
action_dim = env.action_space.shape[0] #4

clip_param = 0.2
num_batches = 10
batch_size = 512

seed = 0
np.random.seed(seed)
tf.set_random_seed(seed)

### 1. build network with pure tf
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)

def my_policy():
net = tf.layers.dense(observation_ph, 128, activation=tf.nn.tanh)
net = tf.layers.dense(net, 64, activation=tf.nn.tanh)
net = tf.layers.dense(net, 64, activation=tf.nn.tanh)
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)

action_logits = tf.layers.dense(net, action_dim, activation=None)
action_dist = tfd.MultivariateNormalDiag(loc=action_logits, scale_diag=[0.2] * action_dim)

return action_dist, None

### 2. build policy, loss, optimizer
pi = ts.policy.Distributional(my_policy, observation_placeholder=observation_ph, has_old_net=True)

ppo_loss_clip = ts.losses.ppo_clip(pi, clip_param)

total_loss = ppo_loss_clip
optimizer = tf.train.AdamOptimizer(1e-4)
train_op = optimizer.minimize(total_loss, var_list=list(pi.trainable_variables))

### 3. define data collection
data_buffer = ts.data.BatchSet()

data_collector = ts.data.DataCollector(
env=env,
policy=pi,
data_buffer=data_buffer,
process_functions=[ts.data.advantage_estimation.full_return],
managed_networks=[pi],
)

### 4. start training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())

# assign actor to pi_old
pi.sync_weights()

start_time = time.time()
for i in range(1000):
# collect data
data_collector.collect(num_episodes=50)

# print current return
print('Epoch {}:'.format(i))
data_buffer.statistics()

# update network
for _ in range(num_batches):
feed_dict = data_collector.next_batch(batch_size)
sess.run(train_op, feed_dict=feed_dict)

# assigning pi_old to be current pi
pi.sync_weights()

print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))