Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 67 additions & 0 deletions tests/testthat/_snaps/grf.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# grf classification

Code
translate(set_mode(set_engine(rand_forest(mtry = 100, trees = 1, min_n = 1000),
"grf"), "classification"))
Output
Random Forest Model Specification (classification)

Main Arguments:
mtry = 100
trees = 1
min_n = 1000

Computational engine: grf

Model fit template:
grf::probability_forest(X = missing_arg(), Y = missing_arg(),
weights = missing_arg(), mtry = min_cols(~100, x), num.trees = 1,
min.node.size = min_rows(~1000, x), num.threads = 1)

---

! 100 columns were requested but there were 29 predictors in the data.
i 29 predictors will be used.

# grf regression

Code
translate(set_mode(set_engine(rand_forest(mtry = 100, trees = 1, min_n = 1000),
"grf"), "regression"))
Output
Random Forest Model Specification (regression)

Main Arguments:
mtry = 100
trees = 1
min_n = 1000

Computational engine: grf

Model fit template:
grf::regression_forest(X = missing_arg(), Y = missing_arg(),
weights = missing_arg(), mtry = min_cols(~100, x), num.trees = 1,
min.node.size = min_rows(~1000, x), num.threads = 1)

# grf quantile regression

Code
translate(set_mode(set_engine(rand_forest(mtry = 100, trees = 1, min_n = 1000),
"grf"), "quantile regression", quantile_levels = (1:3) / 4))
Output
Random Forest Model Specification (quantile regression)

Main Arguments:
mtry = 100
trees = 1
min_n = 1000

Computational engine: grf

Model fit template:
grf::quantile_forest(X = missing_arg(), Y = missing_arg(), mtry = min_cols(~100,
x), num.trees = 1, min.node.size = min_rows(~1000, x), num.threads = 1,
quantiles = quantile_levels)
Message
Quantile levels: 0.25, 0.5, and 0.75.

302 changes: 302 additions & 0 deletions tests/testthat/test-grf.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,302 @@
test_that('grf classification', {
skip_if_not_installed("parsnip", minimum_version = "1.3.3.9000")
skip_if_not_installed("grf")
skip_if_not_installed("modeldata")

scat_dat <- modeldata::scat
scat_tr <- scat_dat[1:94, ]
scat_te <- scat_dat[95:110, ]

expect_snapshot(
rand_forest(mtry = 100, trees = 1, min_n = 1000) |>
set_engine("grf") |>
set_mode("classification") |>
translate()
)

expect_snapshot_warning(
rand_forest(mtry = 100) |>
set_engine("grf") |>
set_mode("classification") |>
fit(Species ~ ., data = scat_tr)
)

grf_spec <-
rand_forest() |>
set_engine("grf", seed = 1) |>
set_mode("classification")

set.seed(281)
grf_fit <- fit(grf_spec, Species ~ ., data = scat_tr)
expect_s3_class(grf_fit$fit, "probability_forest")

###

grf_cls <- predict(grf_fit, scat_te)
expect_equal(nrow(grf_cls), nrow(scat_te))
expect_equal(
grf_cls[0, ],
structure(
list(
.pred_class = structure(
integer(0),
levels = c("bobcat", "coyote", "gray_fox"),
class = "factor"
)
),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame")
)
)

###

grf_prb <- predict(grf_fit, scat_te, type = "prob")
expect_equal(nrow(grf_prb), nrow(scat_te))
expect_equal(
grf_prb[0, ],
structure(
list(
.pred_bobcat = numeric(0),
.pred_coyote = numeric(0),
.pred_gray_fox = numeric(0)
),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame")
)
)

###

grf_ci <- predict(grf_fit, scat_te, type = "conf_int")
expect_equal(nrow(grf_ci), nrow(scat_te))
expect_equal(
grf_ci[0, ],
structure(
list(
.pred_lower_bobcat = numeric(0),
.pred_lower_coyote = numeric(0),
.pred_lower_gray_fox = numeric(0),
.pred_upper_bobcat = numeric(0),
.pred_upper_coyote = numeric(0),
.pred_upper_gray_fox = numeric(0)
),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame"),
level = 0.95
)
)
})

test_that('grf classification with case weights', {
skip_if_not_installed("parsnip", minimum_version = "1.3.3.9000")
skip_if_not_installed("grf")
skip_if_not_installed("modeldata")

scat_dat <- modeldata::scat
scat_tr <- scat_dat[1:94, ]
scat_te <- scat_dat[95:110, ]

set.seed(281)
scat_cw <-
scat_tr |>
mutate(
wts = hardhat::importance_weights(runif(nrow(scat_tr)))
)
not_missing <- complete.cases(scat_cw)

set.seed(281)
grf_wt_fit <- fit(
grf_spec,
Species ~ .,
data = scat_cw |> select(-wts),
case_weights = scat_cw$wts[not_missing]
)
expect_s3_class(grf_wt_fit$fit, "probability_forest")
expect_false(
isTRUE(
all.equal(
grf_wt_fit$fit$predictions,
grf_fit$fit$predictions
)
)
)
expect_equal(
grf_wt_fit$fit$sample.weights,
scat_cw$wts[not_missing]
)

set.seed(281)
grf_wf_fit <-
workflow(Species ~ ., grf_spec) |>
add_case_weights(wts) |>
fit(scat_cw)

expect_false(
isTRUE(
all.equal(
grf_fit$fit$predictions,
grf_wf_fit$fit$fit$fit$predictions
)
)
)
expect_equal(
grf_wf_fit$fit$fit$fit$sample.weights,
scat_cw$wts
)
})

test_that('grf regression', {
skip_if_not_installed("parsnip", minimum_version = "1.3.3.9000")
skip_if_not_installed("grf")
skip_if_not_installed("modeldata")

ames_dat <- modeldata::ames[1:100, ]
ames_tr <- ames_dat[1:90, ]
ames_te <- ames_dat[91:100, ]

expect_snapshot(
rand_forest(mtry = 100, trees = 1, min_n = 1000) |>
set_engine("grf") |>
set_mode("regression") |>
translate()
)

grf_spec <-
rand_forest() |>
set_engine("grf", seed = 101010101) |>
set_mode("regression")

set.seed(281)
grf_fit <- fit(grf_spec, Sale_Price ~ ., data = ames_tr)
expect_s3_class(grf_fit$fit, "regression_forest")

###

grf_num <- predict(grf_fit, ames_te)
expect_equal(nrow(grf_num), nrow(ames_te))
expect_equal(
grf_num[0, ],
structure(
list(.pred = double(0)),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame")
)
)

###

grf_ci <- predict(grf_fit, ames_te, type = "conf_int")
expect_equal(nrow(grf_ci), nrow(ames_te))
expect_equal(
grf_ci[0, ],
structure(
list(.pred_lower = double(0), .pred_upper = double(0)),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame"),
level = 0.95
)
)
})

test_that('grf regression with case weights', {
skip_if_not_installed("parsnip", minimum_version = "1.3.3.9000")
skip_if_not_installed("grf")
skip_if_not_installed("modeldata")

ames_dat <- modeldata::ames[1:100, ]
ames_tr <- ames_dat[1:90, ]
ames_te <- ames_dat[91:100, ]

set.seed(281)
ames_cw <-
ames_tr |>
mutate(
wts = hardhat::importance_weights(runif(nrow(ames_tr)))
)

set.seed(281)
grf_wt_fit <- fit(
grf_spec,
Sale_Price ~ .,
data = ames_cw |> select(-wts),
case_weights = ames_cw$wts
)
expect_s3_class(grf_wt_fit$fit, "regression_forest")
expect_false(
isTRUE(
all.equal(
grf_wt_fit$fit$predictions,
grf_fit$fit$predictions
)
)
)
expect_equal(
grf_wt_fit$fit$sample.weights,
ames_cw$wts
)

set.seed(281)
grf_wf_fit <-
workflow(Sale_Price ~ ., grf_spec) |>
add_case_weights(wts) |>
fit(ames_cw)

expect_false(
isTRUE(
all.equal(
grf_fit$fit$predictions,
grf_wf_fit$fit$fit$fit$predictions
)
)
)
expect_equal(
grf_wf_fit$fit$fit$fit$sample.weights,
ames_cw$wts
)
})

test_that('grf quantile regression', {
skip_if_not_installed("parsnip", minimum_version = "1.3.3.9000")
skip_if_not_installed("grf")
skip_if_not_installed("modeldata")

ames_dat <- modeldata::ames[1:100, ]
ames_tr <- ames_dat[1:90, ]
ames_te <- ames_dat[91:100, ]

expect_snapshot(
rand_forest(mtry = 100, trees = 1, min_n = 1000) |>
set_engine("grf") |>
set_mode("quantile regression", quantile_levels = (1:3) / 4) |>
translate()
)

grf_spec <-
rand_forest() |>
set_engine("grf") |>
set_mode("quantile regression", quantile_levels = (1:3) / 4)

set.seed(281)
grf_fit <- fit(grf_spec, Sale_Price ~ ., data = ames_tr)
expect_s3_class(grf_fit$fit, "quantile_forest")

###

grf_qtl <- predict(grf_fit, ames_te)
expect_equal(nrow(grf_qtl), nrow(ames_te))
expect_equal(
grf_qtl[0, ],
structure(
list(
.pred_quantile = structure(
list(),
quantile_levels = c(0.25, 0.5, 0.75),
class = c("quantile_pred", "vctrs_vctr", "list")
)
),
row.names = integer(0),
class = c("tbl_df", "tbl", "data.frame")
)
)
})