intersection recognition(ros ver.)
- MeCab (Python)
$ roslaunch intersection_recognition simple_hypothesis.launch
-
simple_hypothesis.launch
- extended_toe_finding
- scan_hz : Frequency of 2D-LiDAR
- distance_thresh : Threshold of LiDAR-beam
- read_scenario.py
- scenario_path : Path to .txt-file that a scenario is saved to
- extended_toe_finding
-
hypothesis_simple.launch
- toe_finding
- scan_hz : Frequency of 2D-LiDAR
- scan_off_set : How many adjacent point clouds to ignore
- epsilon1 : Threshold
- epsilon2 : Threshold
- epsilon3 : Threshold
- toe_finding
-
hypothesis.launch
- intersection_recognition_tensorflow.p
- model_full_path: Path to load Neural Network model(.h5)
- intersection_recognition_tensorflow.p
- check_scenario : Compare scenario and hypothesis of intersection.
- /rotate_rad : Specifies how much the robot should rotate with /rotate_rad (if /rotate_rad == 0, then go straight).
- cmd_vel_controller2 : The robot will rotate at the angle specified by /rotate_rad to publish cmd_vel.
- /turn_finish_flg : Publish this flg when the robot rotates at the angle specified by /rotate_rad.
- /emergency_stop_flg : When this flg is true, the robot stop the move and the calculation.