Skip to content

code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

License

Notifications You must be signed in to change notification settings

tim-learn/BA3US

Folders and files

NameName
Last commit message
Last commit date

Latest commit

787f688 · Oct 23, 2020

History

4 Commits
Jul 29, 2020
Jul 29, 2020
Jul 29, 2020
Jul 29, 2020
Jul 29, 2020
Jul 29, 2020
Jul 29, 2020
Jul 29, 2020
Jul 29, 2020
Oct 23, 2020

Repository files navigation

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation.

framework

Prerequisites:

  • python == 3.6.8
  • pytorch ==1.1.0
  • torchvision == 0.3.0
  • numpy, scipy, PIL, argparse, tqdm

Dataset:

  • Please manually download the datasets Office, Office-Home, ImageNet-Caltech from the official websites, and modify the path of images in each '.txt' under the folder './data/'.
  • We adopt the same data protocol as PADA.

Training:

  1. Partial Domain Adaptation (PDA) on the Office-Home dataset [Art(s=0) -> Clipart(t=1)]
    python run_partial.py --s 0 --t 1 --dset office_home --net ResNet50 --cot_weight 1. --output run1 --gpu_id 0
  2. Partial Domain Adaptation (PDA) on the Office dataset [Amazon(s=0) -> DSLR(t=1)]
    python run_partial.py --s 0 --t 1 --dset office --net ResNet50 --cot_weight 5. --output run1 --gpu_id 0
    python run_partial.py --s 0 --t 1 --dset office --net VGG16 --cot_weight 5. --output run1 --gpu_id 0
  3. Partial Domain Adaptation (PDA) on the ImageNet-Caltech dataset [ImageNet(s=0) -> Caltech(t=1)]
    python run_partial.py --s 0 --t 1 --dset imagenet_caltech --net ResNet50 --cot_weight 5. --output run1 --gpu_id 0

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{liang2020baus,
    title={A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation},
    author={Liang, Jian, and Wang, Yunbo, and Hu, Dapeng, and He, Ran and Feng, Jiashi},
    booktitle={European Conference on Computer Vision (ECCV)},
    pages={xx-xx},
    month = {August},
    year={2020}
}

Acknowledgement

Some parts of this project are built based on the following open-source implementation

Contact

About

code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published