v1.4.4
("Blitzen") is a major release, featuring numerous updates and bugfixes
(totaling 400+ commits spread across ~8 months), including
- Updates to
Lrnr_nnls
to support binary outcomes, including support for convexity of the resultant model fit and warnings on prediction quality. - Changes to
Lrnr_cv_selector
to support improved computation of the CV-risk, averaging the risk strictly across validation/holdout sets. - Update
Lrnr_sl
by adding a new private slot.cv_risk
to store the risk estimates, using this to avoid unnecessary re-computation in theprint
method (the.cv_risk
slot is populated on the firstprint
call, and only ever re-printed thereafter). - Fix
Lrnr_screener_importance
's pairing of (a) covariates returned by the importance function with (b) covariates as they are defined in the task. This issue only arose when discrete covariates were automatically one-hot encoded upon task initiation (i.e., whencolnames(task$X) != task$nodes$covariates
). - Enhanced functionality in
sl3
task'sadd_interactions
method to support interactions that involve factors. This method is most commonly used byLrnr_define_interactions
, which is intended for use with another learner (e.g.,Lrnr_glmnet
orLrnr_glm
) in aPipeline
. - Modified
Lrnr_gam
formula (if not specified by user) to not usemgcv
's defaultk=10
degrees of freedom for each smooths
term when there are less thank=10
degrees of freedom. This bypasses anmgcv::gam
error, and tends to be relevant only for small n. - Incorporated
min_screen
argumentLrnr_screener_coefs
, which tries to ensure that at leastmin_screen
number of covariates are selected. If this argument is specified and thelearner
argument inLrnr_screener_coefs
is aLrnr_glmnet
, thenlambda
is increased untilmin_screen
number of covariates are selected and a warning is produced. Ifmin_screen
is specified and thelearner
argument inLrnr_screener_coefs
is not aLrnr_glmnet
then it will error. - Added
formula
parameter andprocess_formula
function to the base learner,Lrnr_base
, whose methods carry over to all other learners. When aformula
is supplied as a learner parameter, theprocess_formula function constructs a design matrix by supplying the
formulato
model.matrix. This implementation allows
formulato be supplied to all learners, even those without native
formulasupport. The
formulashould be an object of class "
formula`", or a character string that can be coerced to that class. - Added factory function for performance-based risks for binary outcomes with
ROCR
performance measurescustom_ROCR_risk
. Supports cutoff-dependent and scalarROCR
performance measures. The risk is defined as 1 - performance, and is transformed back to the performance measure incv_risk
andimportance
functions. This change prompted the revision of argument nameloss_fun
andloss_function
toeval_fun
andeval_function
, respectively, since the evaluation of predictions relative to the observations can be either a risk or a loss function. This argument name change impacted the following:Lrnr_solnp
,Lrnr_optim
,Lrnr_cv_selector
,cv_risk
,importance
, andCV_Lrnr_sl
. - Incorporated stratified cross-validation when
folds
are not supplied to thesl3_Task
and the outcome is a discrete (i.e., binary or categorical) variable. - Added to the
importance
method the option to evaluate importance overcovariate_groups
, by removing/permuting all covariates in the same group together. - Added
Lrnr_ga
as another metalearner.
See the NEWS
file for complete details.