Skip to content

Commit

Permalink
[TOPI][Relay][OP] Add a strided_set operation. (apache#4303)
Browse files Browse the repository at this point in the history
  • Loading branch information
abergeron authored and tmoreau89 committed Dec 3, 2019
1 parent f276728 commit b4505ac
Show file tree
Hide file tree
Showing 9 changed files with 386 additions and 2 deletions.
6 changes: 6 additions & 0 deletions python/tvm/relay/op/_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@
_reg.register_schedule("cast_like", schedule_injective)
_reg.register_schedule("reinterpret", schedule_injective)
_reg.register_schedule("strided_slice", schedule_injective)
_reg.register_schedule("strided_set", schedule_injective)
_reg.register_schedule("slice_like", schedule_injective)
_reg.register_schedule("split", schedule_injective)
_reg.register_schedule("take", schedule_injective)
Expand Down Expand Up @@ -304,6 +305,11 @@ def compute_argwhere(attrs, inputs, output_type, _):
new_output_type = tvm.relay.ty.TensorType(output_shape, "int32")
return [topi.argwhere(new_output_type, inputs[0])]

@_reg.register_compute("strided_set")
def compute_strided_set(attrs, inputs, output_type, _):
"""Compute definition of strided_set"""
return [topi.strided_set(inputs[0], inputs[1], inputs[2], inputs[3], inputs[4])]

@script
def _layout_transform_shape_func(data_shape,
out_layout_len,
Expand Down
30 changes: 30 additions & 0 deletions python/tvm/relay/op/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -631,6 +631,36 @@ def strided_slice(data, begin, end, strides=None):
return _make.strided_slice(data, list(begin), list(end), list(strides))


def strided_set(data, v, begin, end, strides=None):
"""Strided set of an array.
Parameters
----------
data : relay.Expr
The source array to be sliced.
v : relay.Expr
The data to be set.
begin: relay.Expr
The indices to begin with in the slicing.
end: relay.Expr
Indices indicating end of the slice.
strides: relay.Expr, optional
Specifies the stride values, it can be negative in that case,
the input tensor will be reversed in that particular axis.
Returns
-------
ret : relay.Expr
The computed result.
"""
strides = strides or const([1], dtype="int32")
return _make.strided_set(data, v, begin, end, strides)


def slice_like(data, shape_like, axes=None):
"""Slice the first input with respect to the second input.
Expand Down
48 changes: 48 additions & 0 deletions src/relay/op/tensor/transform.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2049,6 +2049,54 @@ Examples::
.set_attr<TOpPattern>("TOpPattern", kInjective)
.set_attr<FInferCorrectLayout>("FInferCorrectLayout", StridedSliceInferCorrectLayout);

// strided_set
bool StridedSetRel(const Array<Type>& types,
int num_inputs,
const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 6);
reporter->Assign(types[5], types[0]);
return true;
}

Expr MakeStridedSet(Expr data,
Expr v,
Expr begin,
Expr end,
Expr strides) {
static const Op& op = Op::Get("strided_set");
return CallNode::make(op, {data, v, begin, end, strides}, {});
}

TVM_REGISTER_API("relay.op._make.strided_set")
.set_body_typed(MakeStridedSet);


RELAY_REGISTER_OP("strided_set")
.describe(R"code(Strided set of an array.
Example::
x = [[ 1., 4., 7., 10.],
[ 2., 5., 8., 11.],
[ 3., 6., 9., 12.]]
v = [[ 11., 22., 33.]
[ 44., 55., 66.]]
strided_set(x, v, begin=[0, 1], end=[2, 4], stride=[1, 1]) = \
[[ 1., 11., 22., 33.],
[ 2., 44., 55., 66.],
[ 3., 6., 9., 12.]]
)code" TVM_ADD_FILELINE)
.set_num_inputs(5)
.add_argument("data", "Tensor", "The input tensor.")
.add_argument("v", "Tensor", "The data to set.")
.add_argument("begin", "Tensor", "Indices for the start of the slice.")
.add_argument("end", "Tensor", "Indices indicating the end of the slice.")
.add_argument("strides", "Tensor", "The strides values.")
.set_support_level(4)
.set_attr<TOpPattern>("TOpPattern", kInjective)
.add_type_rel("StridedSet", StridedSetRel);

// relay.split
TVM_REGISTER_NODE_TYPE(SplitAttrs);
Expand Down
40 changes: 40 additions & 0 deletions tests/python/relay/test_op_level4.py
Original file line number Diff line number Diff line change
Expand Up @@ -300,8 +300,48 @@ def verify(dshape, begin, end, strides, output, test_ref=True):
verify((3, 4, 3), [1, 1], [4, 4, 3], None, (2, 3, 3))


def test_strided_set():
def verify(dshape, begin, end, strides, vshape, test_ref=True):
x = relay.var("x", relay.TensorType(dshape, "float32"))
v = relay.var("v", relay.TensorType(vshape, "float32"))
begin_c = relay.const(begin, dtype="int32")
end_c = relay.const(end, dtype="int32")
if strides:
strides_c = relay.const(strides, dtype="int32")
z = relay.strided_set(x, v, begin=begin_c, end=end_c, strides=strides_c)
else:
z = relay.strided_set(x, v, begin=begin_c, end=end_c)
func = relay.Function([x, v], z)
func = run_infer_type(func)
text = func.astext()
assert "strided_set" in text
print(text)
assert func.body.checked_type == relay.ty.TensorType(dshape, "float32")
if not test_ref:
return
x_data = np.random.uniform(size=dshape).astype("float32")
v_data = np.random.uniform(size=vshape).astype("float32")
ref_res = topi.testing.strided_set_python(
x_data, v_data, begin, end, strides)
for target, ctx in ctx_list():
intrp = relay.create_executor("graph", ctx=ctx, target=target)
op_res = intrp.evaluate(func)(x_data, v_data)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res)

verify((3, 4, 3), [0, 0, 0], [4, -5, 4], [1, -1, 2], (3, 1, 2))
verify((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], (1, 3, 3))
verify((3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1], (1, 4, 3))
verify((3, 4, 3), [1, 0, 0], [2, 2, 3], [1, 1, 2], (1, 2, 2))
verify((3, 4, 3), [1, -1, 0], [2, -3, 3], [1, -1, 1], (1, 2, 3))
verify((3, 4, 3), [1, 1, 0], [4, 4, 3], None, (2, 3, 3))
verify((3, 4, 3), [1, 1, 0], [4, 1000, 3], None, (2, 3, 3))
verify((3, 4, 3), [1, 1, 0], [4, 4], None, (2, 3, 3))
verify((3, 4, 3), [1, 1], [4, 4, 3], None, (2, 3, 3))


if __name__ == "__main__":
test_strided_slice()
test_strided_set()
test_binary_op()
test_cmp_type()
test_binary_int_broadcast()
Expand Down
2 changes: 1 addition & 1 deletion topi/python/topi/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
from .lrn_python import lrn_python
from .l2_normalize_python import l2_normalize_python
from .gather_nd_python import gather_nd_python
from .strided_slice_python import strided_slice_python
from .strided_slice_python import strided_slice_python, strided_set_python
from .batch_matmul import batch_matmul
from .slice_axis_python import slice_axis_python
from .sequence_mask_python import sequence_mask
Expand Down
40 changes: 39 additions & 1 deletion topi/python/topi/testing/strided_slice_python.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""gather_nd in python"""
"""strided_slice/set in python"""


def strided_slice_python(data, begin, end, strides):
"""Python version of strided slice operator.
Expand Down Expand Up @@ -46,3 +47,40 @@ def strided_slice_python(data, begin, end, strides):
end[i] if i < len(end) else None,
strides[i] if i < len(strides) else None))
return data[tuple(slices)]


def strided_set_python(data, v, begin, end, strides):
"""Python version of strided slice operator.
Parameters
----------
data : numpy.ndarray
Input data
v : numpy.ndarray
Value data
begin : list
Begining of the slices.
end : list
End of the slices.
strides : list
The stride of each slice.
Returns
-------
result : numpy.ndarray
The updated result.
"""
strides = [] if strides is None else strides
slices = []
res = data.copy()
for i in range(len(data.shape)):
slices.append(slice(
begin[i] if i < len(begin) else None,
end[i] if i < len(end) else None,
strides[i] if i < len(strides) else None))
res[tuple(slices)] = v
return res
93 changes: 93 additions & 0 deletions topi/python/topi/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@
import tvm
import topi
from . import cpp
from . import tag
from .util import within_index, make_idx


def expand_dims(a, axis, num_newaxis=1):
Expand Down Expand Up @@ -155,6 +157,97 @@ def strided_slice(a, begin, end, strides=None):
strides = []
return cpp.strided_slice(a, begin, end, strides)

@tvm.tag_scope(tag=tag.INJECTIVE+",strided_set")
def strided_set(a, v, begin, end, strides=None):
"""Set slice of an array.
Parameters
----------
a : tvm.Tensor
The tensor to be sliced.
v : tvm.Tensor
The values to set
begin: tvm.Tensor
The indices to begin with in the slicing.
end: tvm.Tensor
Indicies indicating end of the slice.
strides: tvm.Tensor, optional
Specifies the stride values, it can be negative
in that case, the input tensor will be reversed
in that particular axis.
Returns
-------
ret : tvm.Tensor
"""
n = len(a.shape)

if len(begin.shape) != 1:
raise ValueError("begin should be a vector")
if not begin.dtype == 'int32':
raise TypeError("begin should be int32")
if len(end.shape) != 1:
raise ValueError("end should be a vector")
if not end.dtype == 'int32':
raise TypeError("end should be int32")
if strides is not None:
if len(strides.shape) != 1:
raise ValueError("strides should be a vector")
if not strides.dtype == 'int32':
raise TypeError("strides should be int32")

def _max(a, b):
return tvm.expr.Select(a > b, a, b)

if strides is None:
strides = [tvm.const(1, 'int32')] * n
else:
strides = [tvm.if_then_else(strides.shape[0] > i,
strides[i],
tvm.const(1, 'int32'))
for i in range(n)]

begin = [tvm.if_then_else(begin.shape[0] > i,
begin[i],
tvm.expr.Select(strides[i] > 0,
tvm.const(0, 'int32'),
a.shape[i]))
for i in range(n)]
end = [tvm.if_then_else(end.shape[0] > i,
end[i],
tvm.expr.Select(strides[i] > 0,
a.shape[i] + 1,
-(a.shape[i] + 1)))
for i in range(n)]


# Convert negative indexes
for i in range(n):
begin[i] = tvm.if_then_else(begin[i] < 0,
begin[i] + a.shape[i],
begin[i])
end[i] = tvm.if_then_else(end[i] < 0,
end[i] + a.shape[i],
end[i])

def _select(*indices):
from_val = []
index_tuple = []
for i in range(n):
from_val.append(
within_index(begin[i], end[i], strides[i], indices[i]))
index_tuple.append(
make_idx(begin[i], end[i], strides[i], a.shape[i], indices[i]))
return tvm.if_then_else(tvm.all(*from_val),
v(*index_tuple),
a(*indices))

return tvm.compute(a.shape, _select, name="strided_set")


def reshape(a, newshape):
"""Reshape the array
Expand Down
Loading

0 comments on commit b4505ac

Please sign in to comment.