Skip to content

toanhvu/learning-to-remember-beauty-products

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning to Remember Beauty Products

by Toan Vu, An Dang, Jia-Ching Wang

Descriptions

This is the implementation of our submissions at AI Meets Beauty Challenge 2020

We develop a deep learning model for the beauty product image retrieval problem. The proposed model has two main components- an encoder and a memory. The encoder extracts and aggregates features from a deep convolutional neural network at multiple scales to get feature embeddings. With the use of an attention mechanism and a data augmentation method, it learns to focus on foreground objects and neglect background on images, so can it extract more relevant features. The memory consists of representative states of all database images as its stacks, and it can be updated during training process. Based on the memory, we introduce a distance loss to regularize embedding vectors from the encoder to be more discriminative. Our model is fully end-to-end, requires no manual feature aggregation and post-processing.

model

Usage

Train

You can train a model for a given architecture as follows

python main.py --model=MultiScaleDense121 --batch-size=16 

Predict

You can get retrieval results given an image folder

python predict.py model_name ./test_data ./result/predictions.csv

Our results

v000164.jpg

v000185.jpg

v000141.jpg

v000160.jpg

v000145.jpg

v000148.jpg

v000154.jpg

v000126.jpg

v000181.jpg

v000103.jpg

v000172.jpg

v000194.jpg

v000155.jpg

v000177.jpg

v000175.jpg

v000162.jpg

v000113.jpg

v000116.jpg

v000188.jpg

v000158.jpg

v000173.jpg

v000152.jpg

v000184.jpg

v000124.jpg

v000195.jpg

v000150.jpg

v000120.jpg

v000129.jpg

v000179.jpg

v000196.jpg

v000118.jpg

v000130.jpg

v000111.jpg

v000138.jpg

v000167.jpg

v000176.jpg

v000132.jpg

v000104.jpg

v000161.jpg

v000136.jpg

v000192.jpg

v000107.jpg

v000189.jpg

v000151.jpg

v000174.jpg

v000159.jpg

v000143.jpg

v000121.jpg

v000102.jpg

v000199.jpg

v000101.jpg

v000165.jpg

v000182.jpg

v000171.jpg

v000139.jpg

v000109.jpg

v000183.jpg

v000110.jpg

v000133.jpg

v000168.jpg

v000122.jpg

v000123.jpg

v000114.jpg

v000131.jpg

v000140.jpg

v000190.jpg

v000178.jpg

v000186.jpg

v000144.jpg

v000191.jpg

v000156.jpg

v000193.jpg

v000200.jpg

v000146.jpg

v000163.jpg

v000125.jpg

v000170.jpg

v000149.jpg

v000169.jpg

v000127.jpg

v000105.jpg

v000198.jpg

v000147.jpg

v000108.jpg

v000153.jpg

v000142.jpg

v000115.jpg

v000119.jpg

v000197.jpg

v000187.jpg

v000112.jpg

v000106.jpg

v000157.jpg

v000128.jpg

v000180.jpg

v000134.jpg

v000135.jpg

v000137.jpg

v000117.jpg

v000166.jpg

Contact

If your have any suggestion or questions, please send email to toanvuhong@gmail.com

Citation

If you find this code useful for your work, please cite our paper

@inproceedings{10.1145/3394171.3416281,
author = {Vu, Toan H. and Dang, An and Wang, Jia-Ching},
title = {Learning to Remember Beauty Products},
year = {2020},
isbn = {9781450379885},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3394171.3416281},
doi = {10.1145/3394171.3416281},
booktitle = {Proceedings of the 28th ACM International Conference on Multimedia},
pages = {4728–4732},
numpages = {5},
location = {Seattle, WA, USA},
series = {MM '20}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages