Skip to content

Commit

Permalink
Fixed levels not actually limiting segmentation; added segmentation t…
Browse files Browse the repository at this point in the history
…ests

Added new test of 3D segmentation to make sure that new levels actually works.
  • Loading branch information
freemansw1 committed Mar 19, 2022
1 parent e65e153 commit 60a6b3b
Show file tree
Hide file tree
Showing 3 changed files with 149 additions and 6 deletions.
9 changes: 5 additions & 4 deletions tobac/segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def segmentation_timestep(
target: string
switch to determine if algorithm looks strating from maxima or minima in input field (maximum: starting from maxima (default), minimum: starting from minima)
level slice
levels at which to seed the cells for the watershedding algorithm
vertical levels at which to seed the cells for the watershedding algorithm
method: string
flag determining the algorithm to use (currently watershedding implemented)
max_distance: float
Expand Down Expand Up @@ -148,12 +148,13 @@ def segmentation_timestep(
if len(ndim_vertical) > 1:
raise ValueError("please specify 1 dimensional vertical coordinate")
for index, row in features_in.iterrows():
print("type: ", type(level))
if ndim_vertical[0] == 0:
markers[:, int(row["hdim_1"]), int(row["hdim_2"])] = row["feature"]
markers[level, int(row["hdim_1"]), int(row["hdim_2"])] = row["feature"]
elif ndim_vertical[0] == 1:
markers[int(row["hdim_1"]), :, int(row["hdim_2"])] = row["feature"]
markers[int(row["hdim_1"]), level, int(row["hdim_2"])] = row["feature"]
elif ndim_vertical[0] == 2:
markers[int(row["hdim_1"]), int(row["hdim_2"]), :] = row["feature"]
markers[int(row["hdim_1"]), int(row["hdim_2"]), level] = row["feature"]
else:
raise ValueError(
"Segmentations routine only possible with 2 or 3 spatial dimensions"
Expand Down
32 changes: 30 additions & 2 deletions tobac/testing.py
Original file line number Diff line number Diff line change
Expand Up @@ -423,7 +423,14 @@ def make_sample_data_3D_3blobs(data_type="iris", invert_xy=False):
return sample_data


def make_dataset_from_arr(in_arr, data_type="xarray"):
def make_dataset_from_arr(
in_arr,
data_type="xarray",
time_dim_num=None,
z_dim_num=None,
y_dim_num=0,
x_dim_num=1,
):
"""Makes a dataset (xarray or iris) for feature detection/segmentation from
a raw numpy/dask/etc. array.
Expand All @@ -433,20 +440,41 @@ def make_dataset_from_arr(in_arr, data_type="xarray"):
The input array to convert to iris/xarray
data_type: str('xarray' or 'iris')
Type of the dataset to return
time_dim_num: int or None
What axis is the time dimension on, None for a single timestep
z_dim_num: int or None
What axis is the z dimension on, None for a 2D array
y_dim_num: int
What axis is the y dimension on, typically 0 for a 2D array
x_dim_num: int
What axis is the x dimension on, typically 1 for a 2D array
Returns
-------
Iris or xarray dataset with everything we need for feature detection/tracking.
"""
import xarray as xr
import iris

if time_dim_num is not None:
raise NotImplementedError("Time dimension not yet implemented in this function")

is_3D = z_dim_num is not None
output_arr = xr.DataArray(in_arr)
if is_3D:
z_max = in_arr.shape[z_dim_num]

if data_type == "xarray":
return output_arr
elif data_type == "iris":
return output_arr.to_iris()
out_arr_iris = output_arr.to_iris()
if is_3D:
out_arr_iris.add_dim_coord(
iris.coords.DimCoord(np.arange(0, z_max), standard_name="altitude"),
z_dim_num,
)
return out_arr_iris
else:
raise ValueError("data_type must be 'xarray' or 'iris'")

Expand Down
114 changes: 114 additions & 0 deletions tobac/tests/test_segmentation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
import tobac.testing as testing
import tobac.segmentation as seg


def test_segmentation_timestep_level():
"""Tests `tobac.segmentation.segmentation_timestep` with a 2D
input feature and a 3D segmentation array, specifying the `level` parameter.
"""
# Before we can run segmentation, we must run feature detection.

# start by building a simple dataset with a single feature
import numpy as np

test_dset_size = (20, 50, 50)
test_hdim_1_pt = 20.0
test_hdim_2_pt = 20.0
test_vdim_pt = 2
test_hdim_1_sz = 5
test_hdim_2_sz = 5
test_vdim_sz = 3
test_dxy = 1000

vdim_start_feat = int(np.ceil(test_vdim_pt - test_vdim_sz / 2))
vdim_end_feat = int(np.ceil(test_vdim_pt + test_vdim_sz / 2))
hdim_1_start_feat = int(np.ceil(test_hdim_1_pt - test_hdim_1_sz / 2))
hdim_1_end_feat = int(np.ceil(test_hdim_1_pt + test_hdim_1_sz / 2))
hdim_2_start_feat = int(np.ceil(test_hdim_2_pt - test_hdim_2_sz / 2))
hdim_2_end_feat = int(np.ceil(test_hdim_2_pt + test_hdim_2_sz / 2))

test_amp = 2

test_data = np.zeros(test_dset_size)
test_data = testing.make_feature_blob(
test_data,
test_hdim_1_pt,
test_hdim_2_pt,
test_vdim_pt,
h1_size=test_hdim_1_sz,
h2_size=test_hdim_2_sz,
v_size=test_vdim_sz,
amplitude=test_amp,
)

# Make a second feature, above the first.

delta_height = 8
test_data = testing.make_feature_blob(
test_data,
test_hdim_1_pt,
test_hdim_2_pt,
test_vdim_pt + delta_height,
h1_size=test_hdim_1_sz,
h2_size=test_hdim_2_sz,
v_size=test_vdim_sz,
amplitude=test_amp,
)

test_data_iris = testing.make_dataset_from_arr(
test_data, data_type="iris", z_dim_num=0, y_dim_num=1, x_dim_num=2
)
# Generate dummy feature dataset
test_feature_ds = testing.generate_single_feature(start_h1=20.0, start_h2=20.0)

out_seg_mask, out_df = seg.segmentation_timestep(
field_in=test_data_iris,
features_in=test_feature_ds,
dxy=test_dxy,
threshold=1.5,
)
out_seg_mask_arr = out_seg_mask.core_data()
# Make sure that all labeled points are segmented, before setting specific levels
assert np.all(
out_seg_mask_arr[
vdim_start_feat:vdim_end_feat,
hdim_1_start_feat:hdim_1_end_feat,
hdim_2_start_feat:hdim_2_end_feat,
]
== np.ones((test_vdim_sz, test_hdim_1_sz, test_hdim_2_sz))
)
assert np.all(
out_seg_mask_arr[
vdim_start_feat + delta_height : vdim_end_feat + delta_height,
hdim_1_start_feat:hdim_1_end_feat,
hdim_2_start_feat:hdim_2_end_feat,
]
== np.ones((test_vdim_sz, test_hdim_1_sz, test_hdim_2_sz))
)

# now set specific levels
out_seg_mask, out_df = seg.segmentation_timestep(
field_in=test_data_iris,
features_in=test_feature_ds,
dxy=test_dxy,
level=slice(vdim_start_feat, vdim_end_feat),
threshold=1.5,
)
out_seg_mask_arr = out_seg_mask.core_data()
# Make sure that all labeled points are segmented, before setting specific levels
assert np.all(
out_seg_mask_arr[
vdim_start_feat:vdim_end_feat,
hdim_1_start_feat:hdim_1_end_feat,
hdim_2_start_feat:hdim_2_end_feat,
]
== np.ones((test_vdim_sz, test_hdim_1_sz, test_hdim_2_sz))
)
assert np.all(
out_seg_mask_arr[
vdim_start_feat + delta_height : vdim_end_feat + delta_height,
hdim_1_start_feat:hdim_1_end_feat,
hdim_2_start_feat:hdim_2_end_feat,
]
== np.zeros((test_vdim_sz, test_hdim_1_sz, test_hdim_2_sz))
)

0 comments on commit 60a6b3b

Please sign in to comment.