This repository is a template directory for ML project and inspired by upura.
.
├── configs
│ └── config.json(not included here)
├── data
│ ├── input
│ │ ├── sample_submission.csv
│ │ ├── train.csv
│ │ └── test.csv
│ └── output
├── docker
│ └── Dockerfile
├── features
├── logs
├── models
├── notebooks
├── src
├── utils
│ ├── data_loader.py
│ ├── feature_base.py
│ ├── feature_create.py
│ └── convert_to_feather.py
├── .gitignore
├── LICENSE
├── README.md
└── run.py
config
:model
: model parametersconfig.yaml
: ML settings
data
input
: contains original data or feather files.output
: contains csv file for submission.
docker
: containsDockerfile
anddocker-compose.yml
features
: contains features created by train and test data.importance
: feature importances
fig
: contains some figures.logs
: contains logging data including features, a model, parameter and cv scores.models
: contains saved model.notebooks
: contains EDA codes.src
: contains model source codes and project-specific useful codes.utils
: contains generally useful codes.requirements.txt
docker-compose up -d
: prepare docker containerdocker-compose run python bash
: start bash
-
cd utils && python convert_to_feather.py
: Convert csv files to feather files. -
python feature_create.py
: Create features in feather files. -
cd .. && cd src && python run.py
: Start learning.