Codebase for TMI and GLADIATOR analyses. TMI is a new method for inferring cell type-specific enhancer-promoter (EP) mediating proteins
You can access the data in the following paths:
- /home/gaga/tomhait/projects/ePPI/rds
- /home/gaga/tomhait/projects/ePPI/data
- Raw data - /home/gaga/html/ct-focs/
Please make sure you have the following pre-installed R packages:
- parallel
- igraph
- httr
- stringi
- dplyr
- plyr
- BSgenome.Hsapiens.UCSC.hg19
- topGO
- seqinr
- clusterProfiler
Also, make sure you have the MEME suite installed on Linux platform: https://meme-suite.org/meme/doc/download.html
Please note that you can run TMI/GLADIATOR only under linux platform
python -W ignore GLADIATOR.py -o data/GLADIDATOR_modules.txt -n data/Interactome.tsv -s data/SeedPS.tsv -p data/PhenSimMat.tsv
The file data/GLADIDATOR_modules.txt, data/Interactome.tsv, data/SeedPS.tsv and data/PhenSimMat.tsv are generated using the MAIN_GLADIATOR_alg.R script.
Filename | Description |
---|---|
MAIN_TF_pair_identification.R | Identification of TF-TF pairs in EP links. |
FUNCTIONS_motif_finding.R | Auxiliary functions for motif finding. |
MAIN_String_analysis.R | Calculates normalize betweenness values per cell type. |
MAIN_GLADIATOR_alg.R | Creates the input files for GLADIATOR program. |
MAIN_TMI_alg.R | Applies the TMI method on the obtained betweenness values from MAIN_String_analysis.R. |
MAIN_enrichment_analysis.R | Performs GO enrichment analyses on predicted cell type-specific PPI modules. |
Please note that the generated code is a line by line running code.
Additional instructions: sthait at gmail dot com; amitlevon at gmail dot com