This code implements NICE papper List of links to pre-trained models:
http://www.mediafire.com/file/15anb9x44nxkkke/best_checkpoint.pth.tar/file
http://www.mediafire.com/file/legt0epbrw8qii3/model_best.pth.tar/file
http://www.mediafire.com/file/l5qbobd2mm5wry5/model_best.pth.tar/file
http://www.mediafire.com/file/et7mvajxamm8sup/model_best.pth.tar/file
http://www.mediafire.com/file/93f7s5h66d6n8z1/model_best.pth.tar/file
python3 deep_isp_main.py --batch_size=16 --resume= --quant=True --quant_bitwidth=4 --inject_noise=True --inject_act_noise=False --act_quant=True --act_bitwidth=8 --quant_epoch_step=6 --quant_start_stage=0 --epochs=500 --learning_rate=3e-5 --gpus 0 --set_gpu=True --stage_only_clamp=False
-
--seed N
- Random seed -
--start-epoch N
- manual epoch number (useful on restarts) -
--epochs EPOCHS
Number of epochs to train. -
--batch_size
BATCH_SIZE Number of epochs to train. -
--num_denoise_layers
NUM_DENOISE_LAYERS num of layers. -
--learning_rate
LEARNING_RATE, -
-lr
LEARNING_RATE The learning rate. -
--decay DECAY
-
-d DECAY
Weight decay (L2 penalty). -
--gpus GPUS
List of GPUs used for training - e.g 0,1,3. Remove to run on CPU -
--datapath DATAPATH
Path to MSR-Demosaicing dataset -
--resume RESUME
Path to checkpoint file -
--out_dir OUT_DIR
Path to save model and results -
--quant_epoch_step QUANT_EPOCH_STEP
quant_bitwidth. -
--num_workers NUM_WORKERS
Num of workers for data. -
--quant_start_stage QUANT_START_STAGE
Num of workers for data. -
--inject_noise INJECT_NOISE
use preproccesing for the grad -
--show_test_result SHOW_TEST_RESULT
show figures of test result -
--quant QUANT
use preproccesing for the grad -
--quant_bitwidth QUANT_BITWIDTH
quant_bitwidth. -
--inject_act_noise INJECT_ACT_NOISE
use preproccesing for the grad -
--act_quant ACT_QUANT
use preproccesing for the grad -
--act_bitwidth ACT_BITWIDTH
quant_bitwidth. -
--step STEP
amount of split the layer in quant. -
--set_gpu SET_GPU
- show figures of test result (False to run on CPU) -
--adaptive_lr ADAPTIVE_LR
show figures of test result -
--enable_decay ENABLE_DECAY
decay_enable -
--weight_relu WEIGHT_RELU
weight_relu -
--weight_grad_after_quant WEIGHT_GRAD_AFTER_QUANT
weight_grad_after_quant -
--random_inject_noise RANDOM_INJECT_NOISE
random_inject_noise -
--stage_only_clamp STAGE_ONLY_CLAMP
stage_only_clamp -
--wrpn WRPN
wrpn quantization -
--copy_statistics COPY_STATISTICS
copy_statistics -
--quant_decay QUANT_DECAY
quant decay. -
--val_part VAL_PART
quant decay.
python3 main.py --model resnet --depth 18 --bitwidth --act-bitwidth --step 21 --gpus 0 --epochs 120 -b 256 --dataset cifar10 --start-from-zero --resume --learning_rate=0.01 --quant_start_stage=0 --quant_epoch_step=3 --datapath --schedule 300
python main.py --model resnet --depth 18 --bitwidth --act-bitwidth --step 21 --schedule 42 110 -lr 1e-4 --decay 4e-5 --gamma 0.93451921456 --gpus 0,1 --epochs 120 -b 128 --dataset imagenet --datapath --resume --quant_start_stage=0 --quant_epoch_step=2 --no-quant-edges --noise_mask 0.05 --act_stats_batch_size 64
python main.py --model resnet --depth 34 --bitwidth --act-bitwidth --step 37 --schedule 73 110 -lr 1e-4 --decay 4e-5 --gamma 0.88296999554 --gpus 0,1 --epochs 120 -b 128 --dataset imagenet --datapath --resume --quant_start_stage=0 --quant_epoch_step=2 --no-quant-edges --noise_mask 0.05 --act_stats_batch_size 64
python main.py --model resnet --depth 50 --bitwidth --act-bitwidth --step 37 --schedule 83 110 -lr 1e-4 --decay 4e-5 --gamma 0.843190929--gpus 0,1 --epochs 120 -b 128 --dataset imagenet --datapath --resume --quant_start_stage=0 --quant_epoch_step=1.5 --no-quant-edges --noise_mask 0.05 --act_stats_batch_size 64