Skip to content

Commit

Permalink
Fix coverage and remove broken example code in doc
Browse files Browse the repository at this point in the history
  • Loading branch information
tomwhite committed Nov 18, 2024
1 parent 6e6392a commit 0437a65
Showing 1 changed file with 4 additions and 26 deletions.
30 changes: 4 additions & 26 deletions sgkit/stats/truncated_svd.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,28 +98,6 @@ def __init__(
.. warning::
The implementation currently does not support sparse matrices.
Examples
--------
>>> from dask_ml.decomposition import TruncatedSVD
>>> import dask.array as da
>>> X = da.random.normal(size=(1000, 20), chunks=(100, 20))
>>> svd = TruncatedSVD(n_components=5, n_iter=3, random_state=42)
>>> svd.fit(X) # doctest: +NORMALIZE_WHITESPACE
TruncatedSVD(algorithm='tsqr', n_components=5, n_iter=3,
random_state=42, tol=0.0)
>>> print(svd.explained_variance_ratio_) # doctest: +ELLIPSIS
[0.06386323 0.06176776 0.05901293 0.0576399 0.05726607]
>>> print(svd.explained_variance_ratio_.sum()) # doctest: +ELLIPSIS
0.299...
>>> print(svd.singular_values_) # doctest: +ELLIPSIS
array([35.92469517, 35.32922121, 34.53368856, 34.138..., 34.013...])
Note that ``transform`` returns a ``dask.Array``.
>>> svd.transform(X)
dask.array<sum-agg, shape=(1000, 5), dtype=float64, chunksize=(100, 5)>
"""
self.algorithm = algorithm
self.n_components = n_components
Expand Down Expand Up @@ -148,7 +126,7 @@ def fit(self, X, y=None):

def _check_array(self, X):
if self.n_components >= X.shape[1]:
raise ValueError(
raise ValueError( # pragma: no cover
"n_components must be < n_features; "
"got {} >= {}".format(self.n_components, X.shape[1])
)
Expand All @@ -174,14 +152,14 @@ def fit_transform(self, X, y=None):
"""
X = self._check_array(X)
if self.algorithm not in {"tsqr", "randomized"}:
raise ValueError(
raise ValueError( # pragma: no cover
"`algorithm` must be 'tsqr' or 'randomized', not '{}'".format(
self.algorithm
)
)
if self.algorithm == "tsqr":
if has_keyword(da.linalg.svd, "full_matrices"):
u, s, v = da.linalg.svd(X, full_matrices=False)
u, s, v = da.linalg.svd(X, full_matrices=False) # pragma: no cover
else:
u, s, v = da.linalg.svd(X)
u = u[:, : self.n_components]
Expand Down Expand Up @@ -245,4 +223,4 @@ def inverse_transform(self, X):
Note that this is always a dense array.
"""
# X = check_array(X)
return X @ self.components_
return X @ self.components_ # pragma: no cover

0 comments on commit 0437a65

Please sign in to comment.