keras-rcnn is the Keras package for region-based convolutional neural networks.
Let’s read and inspect some data:
training_dictionary, test_dictionary = keras_rcnn.datasets.shape.load_data()
categories = {"circle": 1, "rectangle": 2, "triangle": 3}
generator = keras_rcnn.preprocessing.ObjectDetectionGenerator()
generator = generator.flow_from_dictionary(
dictionary=training_dictionary,
categories=categories,
target_size=(224, 224)
)
validation_data = keras_rcnn.preprocessing.ObjectDetectionGenerator()
validation_data = validation_data.flow_from_dictionary(
dictionary=test_dictionary,
categories=categories,
target_size=(224, 224)
)
target, _ = generator.next()
target_bounding_boxes, target_categories, target_images, target_masks, target_metadata = target
target_bounding_boxes = numpy.squeeze(target_bounding_boxes)
target_images = numpy.squeeze(target_images)
target_categories = numpy.argmax(target_categories, -1)
target_categories = numpy.squeeze(target_categories)
keras_rcnn.util.show_bounding_boxes(target_image, target_bounding_boxes, target_categories)
Let’s create an RCNN instance:
model = keras_rcnn.models.RCNN((224, 224, 3), ["circle", "rectangle", "triangle"])
and pass our preferred optimizer to the compile method:
optimizer = keras.optimizers.Adam()
model.compile(optimizer)
Finally, let’s use the fit_generator method to train our network:
model.fit_generator(
epochs=10,
generator=generator,
validation_data=validation_data
)
A backbone is the convolutional neural network (CNN) that’s responsible for extracting the features that’re used by the RCNN. Keras-RCNN provides a number of popular backbones like ResNet and VGG. You can use a backbone by passing a backbone function to the RCNN constructor:
backbone = keras_rcnn.models.backbone.VGG16
model = keras_rcnn.models.RCNN((224, 224, 3), ["circle", "rectangle", "triangle"], backbone)
The data is made up of a list of dictionaries corresponding to images.
- For each image, add a dictionary with keys 'image', 'objects'
- 'image' is a dictionary, which contains keys 'checksum', 'pathname', and 'shape'
- 'checksum' is the md5 checksum of the image
- 'pathname' is the pathname of the image, put in full pathname
- 'shape' is a dictionary with keys 'r', 'c', and 'channels'
- 'c': number of columns
- 'r': number of rows
- 'channels': number of channels
- 'objects' is a list of dictionaries, where each dictionary has keys 'bounding_box', 'category'
- 'bounding_box' is a dictionary with keys 'minimum' and 'maximum'
- 'minimum': dictionary with keys 'r' and 'c'
- 'r': smallest bounding box row
- 'c': smallest bounding box column
- 'maximum': dictionary with keys 'r' and 'c'
- 'r': largest bounding box row
- 'c': largest bounding box column
- 'category' is a string denoting the class name
Suppose this data is save in a file called training.json. To load data,
import json
with open('training.json') as f:
d = json.load(f)
We’ve been meeting in the #keras-rcnn channel on the keras.io Slack server.
You can join the server by inviting yourself from the following website: