Skip to content

A hybrid classifier for SCCmec encoded in Staphylococcus aureus genomes

Notifications You must be signed in to change notification settings

tongzhouxu/SCCmec_CLA

 
 

Repository files navigation

Pipeline for Staphylococcal Cassette Chromosome mec Classification

Prerequisites

  • python 3.7
  • virtualenv

Installing

Create working dir

$ mkdir workingspace
$ cd workingspace

Create a virtualenv & activate it

$ virtualenv sccmec_cla
$ source ./sccmec_cla/bin/activate

Download and unzip

$ unzip SCCmec_CLA-master.zip
$ cd SCCmec_CLA-master

Setup PROKKA database

$ ./helpers/programs/prokka-1.12/bin/prokka --setupdb

Install requirements

$ pip install -r requirements.txt

Usage

Put sequences (contigs files) inside INPUT folder and run

$ python sccmec_classification.py

OUTPUT

  • attL_<CONTIG_FILENAME>.fasta <- left end sccmec
  • attR_<CONTIG_FILENAME>.fasta <- right end sccmec
  • sccmec_<CONTIG_FILENAME>.fasta <- cassette fasta format
  • sccmec_<CONTIG_FILENAME>_type.txt <- current format annotation
  • core_elements_sccmec_<CONTIG_FILENAME>.txt <- detail current format annotation
  • annotation_table_sccmec_<CONTIG_FILENAME>.txt <- sccmec annotation table
  • sccmec_<CONTIG_FILENAME>_neighbors_cassettes.txt <- close related cassettes
  • fig.png <- network viz using matplotlib
  • sccmec_<CONTIG_FILENAME>_cytoscape_network.sif <- Cytoscape format files
  • sccmec_<CONTIG_FILENAME>_cytoscape_network.eda <- Cytoscape format files
  • SCCmec_<CONTIG_FILENAME>.png <- Graphical Representation

Built With

  • [prokka](add link) - Used to make annotation
  • [BLAST](add link) - Used to identify core elements
  • [mash](add link) - Used to generate similarity networks
  • [DnaFeaturesViewer](add link) - Used create a graphical representation

Contributing

Versioning

Author

  • Felipe Sepúlveda - Initial work - fesepc

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

About

A hybrid classifier for SCCmec encoded in Staphylococcus aureus genomes

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.5%
  • C 1.4%
  • Perl 0.8%
  • C++ 0.2%
  • TeX 0.1%
  • JavaScript 0.0%