Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat: [cog-1089] Define pydantic models for descriptive graph metrics and input metrics #466

Merged
merged 9 commits into from
Jan 28, 2025

Conversation

alekszievr
Copy link
Contributor

@alekszievr alekszievr commented Jan 23, 2025

Description

DCO Affirmation

I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin

Summary by CodeRabbit

  • New Features
    • Introduced a new data class: GraphMetricData, enhancing data management capabilities.
    • GraphMetricData includes metrics such as the number of nodes, edges, and clustering metrics.

Copy link
Contributor

coderabbitai bot commented Jan 23, 2025

Walkthrough

The changes introduce a new class, GraphMetricData, to the MetricData.py file. This class inherits from Base and defines a table named graph_metric_table with various columns relevant to graph metrics. The class includes fields such as id, num_tokens, num_nodes, num_edges, and several others, along with timestamp fields for creation and updates. SQLAlchemy is utilized for defining the data types and constraints of its fields.

Changes

File Change Summary
cognee/modules/data/models/MetricData.py Added GraphMetricData class, defining graph_metric_table with various graph-related fields.

Sequence Diagram(s)

sequenceDiagram
    participant User
    participant MetricData
    participant Database

    User->>MetricData: Create GraphMetricData
    MetricData->>Database: Insert graph_metric_table
    Database-->>MetricData: Confirm insertion
Loading

🐰 In the meadow, changes bloom,
A new class hops, dispelling gloom.
Metrics for graphs now take their place,
In data's dance, they find their grace.
Timestamps tick, a rhythmic cheer,
Hop along, new features here! 🌼

✨ Finishing Touches
  • 📝 Generate Docstrings (Beta)

Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

❤️ Share
🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai generate docstrings to generate docstrings for this PR. (Beta)
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

@alekszievr alekszievr requested a review from dexters1 January 23, 2025 13:57
@alekszievr alekszievr self-assigned this Jan 23, 2025
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 5

🧹 Nitpick comments (1)
cognee/modules/data/models/MetricData.py (1)

22-23: Simplify timestamp defaults.

Instead of using lambda functions, you can directly pass the function reference.

-    created_at = Column(DateTime(timezone=True), default=lambda: datetime.now(timezone.utc))
-    updated_at = Column(DateTime(timezone=True), onupdate=lambda: datetime.now(timezone.utc))
+    created_at = Column(DateTime(timezone=True), default=datetime.now)
+    updated_at = Column(DateTime(timezone=True), onupdate=datetime.now)
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 90657a2 and 8b60ba1.

📒 Files selected for processing (1)
  • cognee/modules/data/models/MetricData.py (1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (1)
  • GitHub Check: docker-compose-test
🔇 Additional comments (2)
cognee/modules/data/models/MetricData.py (2)

8-42: Consider using Pydantic with SQLAlchemy.

The PR objective mentions using Pydantic models, but this is a pure SQLAlchemy model. Consider using SQLModel or creating separate Pydantic models for API validation and documentation.

Let's check if other models in the project use Pydantic:

✅ Verification successful

Confirmed: Pydantic models should be added for API layer

The codebase extensively uses Pydantic for data validation across API endpoints and DTOs. Consider creating a separate Pydantic model for GraphMetricData to maintain consistency with the project's architecture, where SQLAlchemy handles database operations and Pydantic handles API validation.

Example locations showing this pattern:

  • cognee/api/DTO.py: Base DTOs using Pydantic
  • cognee/shared/data_models.py: Domain models using Pydantic
  • cognee/api/v1/cognify/routers/: API endpoints using Pydantic models
🏁 Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Search for Pydantic usage in models
rg -l "from pydantic" "cognee/modules/data/models/"

Length of output: 51


Script:

#!/bin/bash
# Check for Pydantic/SQLModel in dependency files
echo "=== Checking dependencies ==="
fd -e txt -e toml "requirements|pyproject" -x cat {}

echo -e "\n=== Checking for Pydantic imports project-wide ==="
rg "from pydantic|import pydantic|from sqlmodel"

echo -e "\n=== Checking for BaseModel usage (Pydantic's base class) ==="
rg "class.*\(.*BaseModel.*\)"

Length of output: 15132


47-47: Verify if additional input metrics are needed.

The model only tracks token count. Consider if other input metrics should be captured for comprehensive monitoring.

Let's check if there are related issues or discussions:

✅ Verification successful

Current input metrics are sufficient for their intended purpose

The InputMetricData class appropriately focuses on token count, which is crucial for resource tracking. Other input characteristics are comprehensively covered by the extensive evaluation framework that includes correctness, comprehensiveness, diversity, and various other quality metrics.

🏁 Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Search for related issues about input metrics
gh issue list --search "input metrics in:title,body" --limit 5

Length of output: 64


Script:

#!/bin/bash
# Find MetricData usage and other metric patterns
echo "=== MetricData Usage ==="
rg "MetricData" -l

echo -e "\n=== Metric Collection Points ==="
rg "metrics?\." -l

echo -e "\n=== Other Metric Models ==="
fd -e py -e js -e ts ".*[Mm]etric.*"

echo -e "\n=== MetricData Implementation ==="
rg -A 10 "class MetricData" 

Length of output: 622


Script:

#!/bin/bash
# Examine metric implementations
echo "=== MetricData Class ==="
cat cognee/modules/data/models/MetricData.py

echo -e "\n=== Evaluation Metrics ==="
echo "--- deepeval_metrics.py ---"
cat evals/deepeval_metrics.py

echo -e "\n--- qa_metrics_utils.py ---"
cat evals/qa_metrics_utils.py

Length of output: 7902

@@ -0,0 +1,57 @@
from datetime import datetime, timezone

from sqlalchemy import Column, DateTime, Float, Integer, ARRAY
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Add primary key column import.

The models are missing primary key columns. Import and add an appropriate primary key (e.g., id) for both tables.

-from sqlalchemy import Column, DateTime, Float, Integer, ARRAY
+from sqlalchemy import Column, DateTime, Float, Integer, ARRAY, Identity
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
from sqlalchemy import Column, DateTime, Float, Integer, ARRAY
from sqlalchemy import Column, DateTime, Float, Integer, ARRAY, Identity

cognee/modules/data/models/MetricData.py Show resolved Hide resolved
cognee/modules/data/models/MetricData.py Outdated Show resolved Hide resolved
Comment on lines 52 to 57
def to_json(self) -> dict:
return {
"num_tokens": self.num_tokens,
"createdAt": self.created_at.isoformat(),
"updatedAt": self.updated_at.isoformat() if self.updated_at else None,
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Maintain consistent field naming in JSON serialization.

Similar to GraphMetricData, use consistent field naming convention.

         "num_tokens": self.num_tokens,
-        "createdAt": self.created_at.isoformat(),
-        "updatedAt": self.updated_at.isoformat() if self.updated_at else None,
+        "created_at": self.created_at.isoformat(),
+        "updated_at": self.updated_at.isoformat() if self.updated_at else None,
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def to_json(self) -> dict:
return {
"num_tokens": self.num_tokens,
"createdAt": self.created_at.isoformat(),
"updatedAt": self.updated_at.isoformat() if self.updated_at else None,
}
def to_json(self) -> dict:
return {
"num_tokens": self.num_tokens,
"created_at": self.created_at.isoformat(),
"updated_at": self.updated_at.isoformat() if self.updated_at else None,
}

Comment on lines 25 to 41
def to_json(self) -> dict:
return {
"num_nodes": self.num_nodes,
"num_edges": self.num_edges,
"mean_degree": self.mean_degree,
"edge_density": self.edge_density,
"num_connected_components": self.num_connected_components,
"sizes_of_connected_components": self.sizes_of_connected_components,
"num_selfloops": self.num_selfloops if self.num_selfloops else None,
"diameter": self.diameter if self.diameter else None,
"avg_shortest_path_length": self.avg_shortest_path_length
if self.avg_shortest_path_length
else None,
"avg_clustering": self.avg_clustering if self.avg_clustering else None,
"createdAt": self.created_at.isoformat(),
"updatedAt": self.updated_at.isoformat() if self.updated_at else None,
}
Copy link
Contributor

@coderabbitai coderabbitai bot Jan 23, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Maintain consistent field naming convention in JSON serialization.

The JSON field names mix camelCase (createdAt, updatedAt) with snake_case (all other fields). Choose one convention and stick to it.

         "avg_clustering": self.avg_clustering if self.avg_clustering else None,
-        "createdAt": self.created_at.isoformat(),
-        "updatedAt": self.updated_at.isoformat() if self.updated_at else None,
+        "created_at": self.created_at.isoformat(),
+        "updated_at": self.updated_at.isoformat() if self.updated_at else None,
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def to_json(self) -> dict:
return {
"num_nodes": self.num_nodes,
"num_edges": self.num_edges,
"mean_degree": self.mean_degree,
"edge_density": self.edge_density,
"num_connected_components": self.num_connected_components,
"sizes_of_connected_components": self.sizes_of_connected_components,
"num_selfloops": self.num_selfloops if self.num_selfloops else None,
"diameter": self.diameter if self.diameter else None,
"avg_shortest_path_length": self.avg_shortest_path_length
if self.avg_shortest_path_length
else None,
"avg_clustering": self.avg_clustering if self.avg_clustering else None,
"createdAt": self.created_at.isoformat(),
"updatedAt": self.updated_at.isoformat() if self.updated_at else None,
}
def to_json(self) -> dict:
return {
"num_nodes": self.num_nodes,
"num_edges": self.num_edges,
"mean_degree": self.mean_degree,
"edge_density": self.edge_density,
"num_connected_components": self.num_connected_components,
"sizes_of_connected_components": self.sizes_of_connected_components,
"num_selfloops": self.num_selfloops if self.num_selfloops else None,
"diameter": self.diameter if self.diameter else None,
"avg_shortest_path_length": self.avg_shortest_path_length
if self.avg_shortest_path_length
else None,
"avg_clustering": self.avg_clustering if self.avg_clustering else None,
"created_at": self.created_at.isoformat(),
"updated_at": self.updated_at.isoformat() if self.updated_at else None,
}

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good suggestion from coderabbit.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@borisarzentar Thank you for confirming! The consistent naming will indeed improve the code's maintainability.

(\ /)
(^.^)
c(")(")

@alekszievr alekszievr requested a review from lxobr January 24, 2025 08:18
cognee/modules/data/models/MetricData.py Show resolved Hide resolved
Comment on lines 25 to 41
def to_json(self) -> dict:
return {
"num_nodes": self.num_nodes,
"num_edges": self.num_edges,
"mean_degree": self.mean_degree,
"edge_density": self.edge_density,
"num_connected_components": self.num_connected_components,
"sizes_of_connected_components": self.sizes_of_connected_components,
"num_selfloops": self.num_selfloops if self.num_selfloops else None,
"diameter": self.diameter if self.diameter else None,
"avg_shortest_path_length": self.avg_shortest_path_length
if self.avg_shortest_path_length
else None,
"avg_clustering": self.avg_clustering if self.avg_clustering else None,
"createdAt": self.created_at.isoformat(),
"updatedAt": self.updated_at.isoformat() if self.updated_at else None,
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good suggestion from coderabbit.

cognee/modules/data/models/MetricData.py Outdated Show resolved Hide resolved
cognee/modules/data/models/MetricData.py Show resolved Hide resolved
@alekszievr alekszievr force-pushed the feat/cog-1089-pydantic-model-for-metrics branch from 1057a14 to bbc39a7 Compare January 25, 2025 16:29
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

♻️ Duplicate comments (1)
cognee/modules/data/models/MetricData.py (1)

3-3: ⚠️ Potential issue

Add missing SQLAlchemy imports for table constraints.

The models require additional SQLAlchemy components for proper table constraints.

-from sqlalchemy import Column, DateTime, Float, Integer, ARRAY
+from sqlalchemy import Column, DateTime, Float, Integer, ARRAY, Identity, String, UniqueConstraint
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 8b60ba1 and 6688b74.

📒 Files selected for processing (1)
  • cognee/modules/data/models/MetricData.py (1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (5)
  • GitHub Check: test
  • GitHub Check: test
  • GitHub Check: test
  • GitHub Check: windows-latest
  • GitHub Check: docker-compose-test

cognee/modules/data/models/MetricData.py Show resolved Hide resolved
cognee/modules/data/models/MetricData.py Outdated Show resolved Hide resolved
cognee/modules/data/models/MetricData.py Outdated Show resolved Hide resolved
@borisarzentar
Copy link
Contributor

@alekszievr Please look at comments.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

♻️ Duplicate comments (1)
cognee/modules/data/models/MetricData.py (1)

14-20: 🛠️ Refactor suggestion

Add NOT NULL constraints to essential metrics.

These metrics appear to be fundamental graph properties that should always be present.

-    num_tokens = Column(Integer)
-    num_nodes = Column(Integer)
-    num_edges = Column(Integer)
-    mean_degree = Column(Float)
-    edge_density = Column(Float)
-    num_connected_components = Column(Integer)
-    sizes_of_connected_components = Column(ARRAY(Integer))
+    num_tokens = Column(Integer, nullable=False)
+    num_nodes = Column(Integer, nullable=False)
+    num_edges = Column(Integer, nullable=False)
+    mean_degree = Column(Float, nullable=False)
+    edge_density = Column(Float, nullable=False)
+    num_connected_components = Column(Integer, nullable=False)
+    sizes_of_connected_components = Column(ARRAY(Integer), nullable=False)
🧹 Nitpick comments (2)
cognee/modules/data/models/MetricData.py (2)

9-10: Add class-level documentation.

Based on the previous discussion about metric types, add docstring to explain the purpose and significance of graph metrics (e.g., nodes, edges, connected components).

 class GraphMetricData(Base):
+    """
+    Stores descriptive metrics about the graph structure.
+    
+    This table captures high-level properties of the graph, including:
+    - Basic metrics (nodes, edges)
+    - Connectivity metrics (components, density)
+    - Path metrics (diameter, shortest paths)
+    - Clustering metrics
+    """
     __tablename__ = "graph_metric_table"

21-24: Add validation constraints to optional metrics.

Consider adding check constraints to ensure valid values when present:

  • diameter should be positive
  • avg_shortest_path_length should be positive
  • avg_clustering should be between 0 and 1
-    num_selfloops = Column(Integer, nullable=True)
-    diameter = Column(Integer, nullable=True)
-    avg_shortest_path_length = Column(Float, nullable=True)
-    avg_clustering = Column(Float, nullable=True)
+    num_selfloops = Column(Integer, nullable=True, CheckConstraint('num_selfloops >= 0'))
+    diameter = Column(Integer, nullable=True, CheckConstraint('diameter > 0'))
+    avg_shortest_path_length = Column(Float, nullable=True, CheckConstraint('avg_shortest_path_length > 0'))
+    avg_clustering = Column(Float, nullable=True, CheckConstraint('avg_clustering >= 0 AND avg_clustering <= 1'))
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 6688b74 and 0c62101.

📒 Files selected for processing (1)
  • cognee/modules/data/models/MetricData.py (1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (21)
  • GitHub Check: run_notebook_test / test
  • GitHub Check: run_notebook_test / test
  • GitHub Check: run_simple_example_test / test
  • GitHub Check: run_multimedia_example_test / test
  • GitHub Check: run_dynamic_steps_example_test / test
  • GitHub Check: run_notebook_test / test
  • GitHub Check: test
  • GitHub Check: test
  • GitHub Check: test
  • GitHub Check: test
  • GitHub Check: run_simple_example_test / test
  • GitHub Check: test
  • GitHub Check: run_notebook_test / test
  • GitHub Check: test
  • GitHub Check: windows-latest
  • GitHub Check: test
  • GitHub Check: test
  • GitHub Check: test
  • GitHub Check: profiler
  • GitHub Check: Build Cognee Backend Docker App Image
  • GitHub Check: docker-compose-test
🔇 Additional comments (3)
cognee/modules/data/models/MetricData.py (3)

1-7: LGTM! All imports are appropriate and used.

The imports cover all necessary components for the SQLAlchemy model implementation.


12-13: Clarify or implement the TODO comment.

The TODO suggests changing the ID to reflect the graph database's unique ID. This needs either:

  1. Implementation if requirements are clear
  2. Clarification in the comment about specific requirements

The UUID choice is good for distributed systems, but consider documenting the relationship with the graph database ID in the class docstring.


26-27: LGTM! Timestamp implementation follows best practices.

The timestamp fields are properly implemented with:

  • Timezone awareness
  • Automatic creation timestamp
  • Automatic update timestamp

@alekszievr alekszievr merged commit 98f0f60 into dev Jan 28, 2025
28 checks passed
@alekszievr alekszievr deleted the feat/cog-1089-pydantic-model-for-metrics branch January 28, 2025 15:11
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants