Recursively convert list
to tuple
, set
to frozenset
,
dict
to mappingproxy
etc.
Example usage:
import freezedata
data = [{'a': [1,2,3], 'b': {1,2,3}}, {1:1, 2:2, 3:3}]
frozendata = freezedata.freeze_data(data)
print(frozendata)
>> (mappingproxy({'a': (1, 2, 3), 'b': frozenset({1, 2, 3})}),
mappingproxy({1: 1, 2: 2, 3: 3}))
This is a read-only data structure, that is; there is no direct way to alter this
data structure from within frozendata
itself (without using some special modules (gc
,
inspect
)).
For example:
frozendata[0]['a'][0] = 4
>> TypeError: 'tuple' object does not support item assignment
del frozendata[1][1]
>> TypeError: 'mappingproxy' object does not support item deletion
Notice: Since a mappingproxy
is not hashable, frozen data
structures containing mappingproxy
(i.e. based on dict
) will not be
hashable either:
hash(frozendata)
>> TypeError: unhashable type: 'mappingproxy'
On the other hand, if the frozen data structure contains only hashable elements, the whole structure will be hashable (and immutable) as well:
frozendata = freezedata.freeze_data([[1,2,3], {4,5,6}])
print(frozendata)
>> ((1, 2, 3), frozenset({4, 5, 6}))
hash(frozendata)
>> -11948691520864899
Functions, modules, (user-created) classes and instances are mutable in Python, and therefore
neither immutable or read-only. By default, using these will result in errors, but setting
parameter allow
as one, several or all of functions
, modules
, classes
and instances
, these can be used in the new new data structure.
Functions have mutable attributes in Python, but sometimes you still want a function in a
new data structure that won't affect the parent data structure / parent function.
By setting allow='functions'
or allow=['functions']
, the new data structure will
contain a copy of the included functions and its public attributes:
def func(n):
return n*2
func.a = 'a'
data = [func]
frozendata = freezedata.freeze_data(data, allow='functions')
data[0] == frozendata[0]
>> False
frozendata[0].a = 'b'
print(data[0].a, frozendata[0].a)
>> a b
modules will be converted to a namedtuple
, if you're freezing a module.
If a module is in the data structure, but it's not top level, an error will by default be raised.
If allow={'modules'}
is set, non-top-level modules will be allowed and kept unchanged.
classes and class instances may be converted into namedtuple
and used in the
frozen data structure by setting allow={'classes', 'instances}
or only one, e.g.
allow={'classes'}
, as needed. By converting to namedtuple
, information may be lost, as
attributes with leading underscores will be ignored:
class Test:
a = 1
def __init__(self, a):
self.a = a
test = Test(2)
frozendata = freezedata.freeze_data([Test, test], allow={'classes', 'instances'})
print(frozendata)
>> (Test(a=1), Test(a=2))
print(type(frozendata[0]), type(frozendata[1]))
>> <class 'freezedata.freezedata.Test'> <class 'freezedata.freezedata.Test'> # two namedtuples