Skip to content

Add logarithmic complexity tasks #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
39 changes: 39 additions & 0 deletions logarithmic_complexity/task_1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
"""
Given an array sorted in ascending order and a number k, check that it occurs in
this array using the half method: first check if the middle element of
the array = k. If it is smaller than k then continue in the same way looking for k in the
right half of the array; if it is smaller, then in the left half.
"""
from utilities.generator import Generator


class Program:
@staticmethod
def binary_search(search_number: int, array: list) -> bool:
left_pointer: int = 0
right_pointer: int = len(array) - 1

while left_pointer <= right_pointer:
mid: int = (left_pointer + right_pointer) // 2
if array[mid] == search_number: # look in the middle
return True
elif array[mid] < search_number: # look in the left
left_pointer: int = mid + 1
else:
right_pointer: int = mid - 1 # look in the right
return False


if __name__ == "__main__":
input_array: list = Generator.generate_ascending_array()
input_search_number: int = Generator.generate_random_search_number()

print(60 * "-")
print(f"Generated random input array: {input_array}")
print(60 * "-")

if Program.binary_search(input_search_number, input_array):
print(f"The number: {input_search_number}, is in the array.")
else:
print(f"The number: {input_search_number}, is not in the array.")
print(60 * "-")
68 changes: 68 additions & 0 deletions logarithmic_complexity/task_2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
"""
Implement an algorithm for inserting a number into a BST tree, and then write a program which,
for a given number k, checks whether k occurs in such a tree.
"""
from utilities.generator import Generator


class TreeNode:
def __init__(self, value: int) -> None:
self.value: int = value
self.left_side: [None | TreeNode] = None
self.right_side: [None | TreeNode] = None


class BinarySearchTree:
def __init__(self) -> None:
self._root_node: [None | TreeNode] = None

def insert(self, value: int) -> None:
if not self._root_node:
self._root_node = TreeNode(value) # if the tree is empty, insert the new value
else:
self._insert_recursively(self._root_node, value)

def _insert_recursively(self, root_node: TreeNode, value: int) -> None:
if value < root_node.value: # insert on the left side of the root
if not root_node.left_side:
root_node.left_side = TreeNode(value)
else:
self._insert_recursively(root_node.left_side, value)
else: # insert on the right side of the root
if not root_node.right_side:
root_node.right_side = TreeNode(value)
else:
self._insert_recursively(root_node.right_side, value)

def search(self, search_number: int) -> bool:
return self._search_recursively(self._root_node, search_number) if self._root_node else False

def _search_recursively(self, root_node: [TreeNode | None], search_number: int) -> bool:
if not root_node: # empty binary tree
return False
if root_node.value == search_number:
return True
elif search_number < root_node.value: # search on the left side of the root
return self._search_recursively(root_node.left_side, search_number)
else: # search on the right side of the root
return self._search_recursively(root_node.right_side, search_number)


if __name__ == "__main__":
binary_search_tree = BinarySearchTree()
input_search_number: int = Generator.generate_random_search_number()
input_numbers: list = Generator.generate_input_array()

for number in input_numbers:
binary_search_tree.insert(number)

print(60 * "-")
print(f"Generated random input search number: {input_search_number}")
print(f"Generated random input numbers: {input_numbers}")
print(60 * "-")

if binary_search_tree.search(input_search_number):
print(f"The number: {input_search_number} exists in the Binary Search Tree.")
else:
print(f"The number: {input_search_number} does not exist in the Binary Search Tree.")
print(60 * "-")