Skip to content

Codebase for “Machine Guides, Human Supervises: Interactive Learning with Global Explanations”.

Notifications You must be signed in to change notification settings

tpopordanoska/explanatory-guided-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

98 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Explanatory guided learning

This is the code that accompanies the paper “Machine Guides, Human Supervises: Interactive Learning with Global Explanations”

Dependencies

The requirements.txt contains the Python dependencies and they can be installed using:

pip install -r requirements.txt

Experiments

To run the experiments, use the main.py script. Type python main.py --help for the list of options.

For instance, to run 10 folds of 100 iterations for the synthetic experiment with XGL(rules) and the competitors use:

python main.py --experiments synthetic --strategies al_dw al_lc random sq_random xgl_rules_simple_tree

The code will save all results in the results directory in pickle format.

Plots

To draw the plots, use the draw.py script. Type python draw.py --help for the list of options.

For example, to draw the plots for XGL(rules) and the competitors run:

python draw.py --folder <name_of_folder_containing_pickles> --strategies al_dw al_lc random sq_random xgl_rules_simple_tree

To draw the plots for XGL(rules) for different values of the parameter θ run:

python draw.py --folder <name_of_folder_containing_pickles> --strategies xgl_rules_simple_tree --thetas_rules 100.0 10.0 1.0

About

Codebase for “Machine Guides, Human Supervises: Interactive Learning with Global Explanations”.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages