This is the code that accompanies the paper “Machine Guides, Human Supervises: Interactive Learning with Global Explanations”
The requirements.txt
contains the Python dependencies and they can be installed using:
pip install -r requirements.txt
To run the experiments, use the main.py
script. Type python main.py --help
for the list of options.
For instance, to run 10 folds of 100 iterations for the synthetic experiment with XGL(rules) and the competitors use:
python main.py --experiments synthetic --strategies al_dw al_lc random sq_random xgl_rules_simple_tree
The code will save all results in the results
directory in pickle format.
To draw the plots, use the draw.py
script. Type python draw.py --help
for the list of options.
For example, to draw the plots for XGL(rules) and the competitors run:
python draw.py --folder <name_of_folder_containing_pickles> --strategies al_dw al_lc random sq_random xgl_rules_simple_tree
To draw the plots for XGL(rules) for different values of the parameter θ run:
python draw.py --folder <name_of_folder_containing_pickles> --strategies xgl_rules_simple_tree --thetas_rules 100.0 10.0 1.0